Смекни!
smekni.com

Сверхпроводимость (стр. 1 из 2)

Содержание

1. Явление сверхпроводимости

2. Свойства сверхпроводников

3. Применение сверхпроводников

Список литературы

1. Явление сверхпроводимости

Особую группу материалов высокой электрической проводимости представляют сверхпроводники. При низких температурах (в настоящее время по крайней мере ниже 18° К) определенные металлы и сплавы приобретают способность проводить ток без сколько-нибудь заметного сопротивления; такие твердые тела называются сверхпроводниками.

Это явление известно уже век, его открыл в 1911 г. Камерлинг-Оннес,который наблюдал такое состояние в ртути при температуре жидкого гелия. В таблице 1 приведен список некоторых известных в настоящее время сверхпроводников и температуры перехода их в сверхпроводящее состояние Тк. Переход обычно происходит очень резко: сопротивление падает от своего нормального значения до нуля в интервале порядка 0,05° К.

Рисунок 1 - Изменение электрического сопротивления в металлах (М) и сверхпроводниках св) в области низких температур [3]

С понижением температуры электрическое сопротивление всех металлов монотонно падает (рисунок 1). Однако есть металлы и сплавы, у которых электрическое сопротивление при критической температуре резко падает до нуля - материал становится сверхпроводником.

Сверхпроводимостьобнаружена у 30 элементов и около 1000 сплавов. Сверхпроводящие свойства обнаруживают многие сплавы со структурой упорядоченных твердых растворов и промежуточных фаз (о-фаза, фаза Лавеса и др.). При обычных температурах эти вещества не обладают высокой проводимостью.

Таблица 1 – Сверхпроводники и их температуры перехода в сверхпроводящее состояние (ºK)[2]

Металл и соединение Температура перехода Тк, ºК Металл и соединение Температура перехода Тк, ºК
ВанадийТанталБелое оловоСвинецРенийМолибден 5,14,383,737,222,400,92 ЦинкNb3SnNbVV3SiTl3Bi5 0,7918,114,717,06,4

2. Свойства сверхпроводников

Наиболее общим свойством сверхпроводников является существование критической температуры сверхпроводимости Тк, ниже которой электросопротивление вещества становится исчезающе малым. Согласно последним оценкам, верхний предел электросопротивления вещества в сверхпроводящем состоянии (т.е. при температуре ниже Тк)составляет 10-26 Ом·м.

Некоторые элементы могут претерпевать аллотропические превращения под действием высоких давлений (порядка десятков тысяч атмосфер). Образующиеся при этом кристаллографические модификации (так называемые фазы высокого давления) при охлаждении переходят в сверхпроводящее состояние, хотя при обычных давлениях эти элементы не являются сверхпроводниками. Например, сверхпроводником является модификация TeII, образующаяся при давлении 56 000 атмосфер, BiII (25 тысяч атмосфер, Тк= 3,9 К), BiIII (27 тысяч атмосфер, Тк=7,2 К). Фазы высокого давления GaII и SbII остаются сверхпроводниками и после снятия высокого давления, и при атмосферном давлении критические температуры сверхпроводящего перехода этих фаз равны соответственно 7,2 и 2,6 К. В обычном состоянии Be и Ga не являются сверхпроводниками, однако становятся таковыми при осаждении на подложках в виде тонких пленок. Появление сверхпроводимости при осаждении пленок из паровой фазы наблюдали также у Се, Pr, Nd, Eu, Yb.

Характерно, что металлы подгрупп IA, IB и IIА, при комнатной температуре являющиеся хорошими проводниками электричества, не являются сверхпроводниками (за исключением бериллия в тонкопленочном состоянии). Ферро- и антиферромагнитные элементы также не являются сверхпроводниками.

Сверхпроводящие характеристики многих элементов, особенно Mo, Ir и W, весьма чувствительны к чистоте металла, что дает основания предполагать, что с развитием методов рафинирования металлов сверхпроводящие свойства будут обнаружены у некоторых других элементов.

Переход из нормального состояния (с ненулевым электросопротивлением) в сверхпроводящее наблюдается не только в чистых элементах, но также в сплавах и интерметаллических соединениях. В настоящее время известно более тысячи сверхпроводников. Б. Маттиас сформулировал правила, связывающие существование сверхпроводимости с валентностью Z.

1. Сверхпроводимость существует только при 2 < Z < 8.

2. У переходных металлов, их сплавов и соединений при Z = 3, 5 или 7 наблюдаются максимальные температуры перехода в сверхпроводящее состояние (см. рисунок 2).

3. Для каждого данного значения Zпредпочтительны определенные кристаллические решетки (для получения максималь ной Tк)причем Ткбыстро растет с атомным объемом сверхпроводника и падает с увеличением массы атома.

Рисунок 2 - Наличие сверхпроводимости и Тк переходных и простых металлов [1]

Наиболее перспективными с точки зрения технического применения являются сверхпроводники с высокой критической температурой. Наиболее высокой Тк обладают сплавы и соединения переходных металлов ниобия и ванадия. Эти сверхпроводящие материалы делятся на три группы: 1) сплавы (твердые растворы) с объемноцентрированной кубической решеткой - Nb-Ti, Nb- Zr. TK ~ 10 К и выше; 2) соединения с решеткой каменной соли, например NbN и Nb (С, N), Тк ~ 18К; 3) соединения ниобия и ванадия с элементами подгрупп алюминия и кремния, имеющие кристаллическую решетку типа β-W и стехиометрическую формулу А3В, где А -Nb или V, В - элемент подгруппы ШВ или IVB, например V3Si, Nb3Sn, Nb3(Al, Ge), TK ~ 21 К и выше.

Критическая температура перехода в сверхпроводящее состояние и другие сверхпроводящие характеристики, о которых будет сказано ниже, соединений А3В весьма чувствительны к малым отклонениям от стехиометрии, к структурному состоянию образца (наличие дисперсных частиц других фаз), дефектов кристаллического строения, степени дальнего порядка. По-видимому, этим объясняется повышение Тк соединений Nb8Al, Nb3Ga, Nb8(Al, Ge) на несколько градусов после закалки от высоких температур и последующего отжига. В частности, Tк соединения Nb3Ge в результате резкой закалки была повышена от 11 до 17К. На тонкопленочных образцах Nb3Ge, полученных распылением, достигнуты значения Тк= 22 К и 23 К. Сверхпроводящие материалы на основе твердых растворов имеют определенные преимущества по сравнению с соединениями типа A3Вв связи с их большей пластичностью.

Вещества в сверхпроводящем состоянии обладают специфическими магнитными свойствами. В первую очередь это проявляется в зависимости критической температуры сверхпроводимости от напряженности внешнего магнитного поля. Критическая температура максимальна в отсутствие внешнего магнитного поля и снижается при увеличении его напряженности. При некоторой напряженности внешнего поля Нкм, называемой критической Тк = 0. Другими словами, в полях, равных или больших Нкм, сверхпроводящее состояние в веществе не возникает ни при каких температурах. Такое поведение сверхпроводников иллюстрируется кривой Нк (Т) (рисунок 3). Каждая точка этой кривой дает величину критического внешнего поля Нк при данной температуре Т < Тк, вызывающего потерю сверхпроводимости. Эта кривая является кривой фазового перехода: сверхпроводящая фаза →нормальная фаза. В отсутствие магнитного поля этот переход является фазовым переходом второго рода. В присутствии внешнего магнитного поля - это переход первого рода.


Рисунок 3 - Зависимость критического поля сверхпроводника от температуры [1]

Другим важным магнитным свойством сверхпроводников является их диамагнетизм. Внутри сверхпроводника, помещенного в магнитное поле, индукция равна нулю. Если же сверхпроводник помещен в магнитное поле при температуре выше критической, то при охлаждении ниже Ткмагнитное поле «выталкивается» из сверхпроводника и его индукция в этом случае также равна нулю.

Разрушение сверхпроводимости внешним магнитным полем и идеальный диамагнетизм сверхпроводников связаны с тем, что для сохранения сверхпроводящего состояния суммарный импульс (кинетическая энергия) электронов должен быть меньше определенного значения. В силу этого существует определенная предельная (критическая) плотность тока jcвыше которой сверхпроводимость нарушается и появляется конечное электросопротивление. Идеальный диамагнетизм сверхпроводника объясняется тем, что приложенное магнитное поле индуцирует на поверхности сверхпроводника токи, не испытывающие сопротивления. Эти токи циркулируют таким образом, что магнитный поток внутри сверхпроводника уничтожается. Таким образом, внешнее магнитное поле проникает в сверхпроводник только на очень небольшую глубину (так называемая глубина проникновения) порядка 10-8-10-9 м. При увеличении внешнего магнитного поля экранирующие токи должны возрастать, для того чтобы сохранить диамагнетизм сверхпроводника. Если внешнее поле достаточно сильно, токи достигнут критического значения и вещество перейдет в нормальное состояние. Экранирующие токи исчезают, и магнитное поле проникает в вещество. Глубина проникновения магнитного поля (при постоянном поле) возрастает с температурой и стремится к бесконечности при Т → Tк, что соответствует переходу в нормальное состояние.

Сверхпроводники с малой глубиной проникновения (резкое затухание магнитного поля у поверхности) называются мягкими сверхпроводниками, или сверхпроводниками I рода. Имеются также жесткие сверхпроводники, или сверхпроводники II рода. Сверхпроводники II рода характеризуются более высокими значениями критических полей и большей шириной температурной области перехода в сверхпроводящее состояние. Для мягких сверхпроводников (олово, ртуть, цинк, свинец) температурный интервал перехода в сверхпроводящее состояние составляет около 0,05 К, тогда как для жестких сверхпроводников (ниобий, рений, соединения со структурой β-W) температурный интервал сверхпроводящего перехода составляет около 0,5 К.