регистрация / вход

Оптимизация режимов резания на фрезерном станке

СОДЕРЖАНИЕ: Тольяттинский Государственный Университет Кафедра “Технология машиностроения” Курсовая работа по дисциплине “Математическое моделирование"

Тольяттинский Государственный Университет

Кафедра “Технология машиностроения”

Курсовая работа

по дисциплине

“Математическое моделирование"

Студент: Комарова И.О.

Группа: М-401

Преподаватель: Бобровский А.В.

Тольятти, 2005

Оптимизация режимов резания

Обработка детали ведется на вертикально-фрезерном станке 6Р12 концевой фрезой с цилиндрическим хвостовиком ГОСТ 17025-71.

Диаметр фрезы D = 20 мм; количество зубьев z = 6; материал инструмента Р6М5; период стойкости инструмента [Т] = 80 мин; глубина фрезерования t = 20 мм; ширина фрезерования В = 20 мм; рабочий ход Lрх = 70 мм; материал заготовки ШХ15; длина заготовки L = 60 мм; шероховатость поверхности Ra6,3; частота вращения шпинделя станка n = 31,5…1600 об/мин; скорость продольных подач Sпр = 25…1250 мм/мин; мощность электродвигателя Nэ = 7,5 кВт.

Необходимо оптимизировать процесс резания с учетом следующих ограничений:

1) ограничение по кинематике станка;

2) ограничение по периоду стойкости инструмента;

3) ограничение по мощности привода главного движения станка.

Эскиз обработки:


1. Графический метод

1) ограничение по кинематике станка

а)

; ;

; ;

б)

; ;

;

2) ограничение по периоду стойкости инструмента

;

;

;

;

;

;

; .

3) ограничение по мощности главного движения станка

;

;

;

;

; ; ;

Выпишем все ограничения, а затем внесем их на один график.

Критерий оптимальности - целевая функция:

Придаем любое значение z и строим две прямые, касающиеся области оптимальных режимов резания в двух крайних ее точках. Таким образом, мы нашли точки А и В.

Найдем координаты точки А. Для этого необходимо решить систему уравнений:

;

;

Подставим координаты точки А в уравнение целевой функции:

Найдем координаты точки В. Для этого необходимо решить систему уравнений:

;

;

Подставим координаты точки В в уравнение целевой функции:

Сравним значения целевой функции для точек А и В:

Значит, оптимальной точкой резания является точка А (0,296; - 0,494).

Определим оптимальные значения режимов резания:

V= 10x1 = 100,296 = 1,977 м/мин;

Sz = 10x2 = 10-0,494 = 0,321 мм/зуб;

об/мин;

мм/мин.

2. Симплекс-метод

Решить систему уравнений:

Найти значения, при которых целевая функция

.

Приведем все знаки к одному направлению:

Для перехода от системы неравенств, вводим в систему уравнений единичную матрицу. Расширенная форма записи:

;

.

Находим расширенную матрицу, матрицу свободных членов и матрицу коэффициентов при базисных переменных:

.

Выбираем исходный базис. Запишем матрицу коэффициентов при базисных переменных:

Найдем определитель матрицы коэффициентов при базисных переменных:

Находим союзную матрицу:

; ; ;
; ; ;
; ; .

Находим транспонированную матрицу:

Находим обратную матрицу:

Находим решение исходного базиса:

;

.

Базисное решение является допустимым, т.к все его значения положительные.

Вычислим симплекс-разности для всех переменных, не вошедших в базис:

;

Симплекс разности отрицательны, следовательно, найдено оптимальное решение: Вывод: результаты, полученные графическим и симплекс-методом совпали, значит задача решена правильно.

3. Симплекс-таблицы. Решить систему уравнений:

Найти значения, при которых целевая функция

.

Приведем все знаки к одному направлению:

Для перехода от системы неравенств, вводим в систему уравнений единичную матрицу. Расширенная форма записи:

; .

Приведем систему уравнений к виду, где выделены базисные переменные:

По последней записи системы уравнений и целевой функции построим таблицу 1.

После нахождения разрешающего элемента в таблице 1, переходим к заполнению таблицы 2. После построения таблицы 2 в последней строке имеется положительный элемент, значит оптимальное решение не найдено.

Определяем разрешающий элемент в таблице 2 и переходим к заполнению таблицы 3.

Таблица 3.

Таблица 1 Таблица 2 Таблица 3

СН

БН

СЧ х1 х2

СН

БН

СЧ x4 x2

СН

БН

СЧ x4 x3
x3 -0,296 -1 1 x3 0,356 1 0,72 x2 0,494 1,388 1,388
x4 0,652 1 0,72 x1 0,652 1 0,72 x1 0,296 0 -1
x5 1,117 1 1 x5 0,465 -1 0,28 x5 0,327 -1,388 -0,388
zmin -0,135 1 1 zmin -0,787 -1 0,28 zmin -0,925 -1,388 -0,388

В таблице 3 все элементы последней строки отрицательны, значит оптимальное решение найдено:

.

Вывод: результаты, полученные графическим методом и методом симплекс-таблиц совпали, значит, задача решена правильно.

СКАЧАТЬ ДОКУМЕНТ

ДОБАВИТЬ КОММЕНТАРИЙ  [можно без регистрации]

Ваше имя:

Комментарий