Классификация объектов нечисловой природы на основе непараметрических оценок плотности

СОДЕРЖАНИЕ: КЛАССИФИКАЦИЯ ОБЪЕКТОВ НЕЧИСЛОВОЙ ПРИРОДЫ НА ОСНОВЕ НЕПАРАМЕТРИЧЕСКИХ ОЦЕНОК ПЛОТНОСТИ. В СССР в середине 70-х годов активно ведутся работы по статистическому анализу нечисловых данных [1]. В настоящее время во Всесоюзном центре статистических методов и информатики мы при разработке методических документов и программных продуктов по прикладной статистике делим ее на четыре части соответственно виду обрабатываемых статистических данных: на статистику случайных величин, многомерный статистический анализ, статистику временных рядов и случайных процессов, статистику объектов нечисловой природы (другими словами, статистику нечисловых данных).

КЛАССИФИКАЦИЯ ОБЪЕКТОВ НЕЧИСЛОВОЙ ПРИРОДЫ НА ОСНОВЕ НЕПАРАМЕТРИЧЕСКИХ ОЦЕНОК ПЛОТНОСТИ.

В СССР в середине 70-х годов активно ведутся работы по статистическому анализу нечисловых данных [1]. В настоящее время во Всесоюзном центре статистических методов и информатики мы при разработке методических документов и программных продуктов по прикладной статистике делим ее на четыре части соответственно виду обрабатываемых статистических данных: на статистику случайных величин, многомерный статистический анализ, статистику временных рядов и случайных процессов, статистику объектов нечисловой природы (другими словами, статистику нечисловых данных).

Вероятностный и статистический анализ нечисловых данных сопровождали теорию вероятностей и математическую статистику с самого начала их развития. Типичными примерами являются урновые схемы и изучение рождаемости. Испытание Бернулли- вероятностная модель простейшего объекта нечисловой природы. Наиболее массовым применением статистических методов является, видимо, выборочный контроль качества продукции по альтернативному признаку (т. е. по признаку "годен” - “не годен"), относящийся, очевидно, к статистике объектов нечисловой природы [2].

Развитие прикладных исследований привело к необходимости рассмотрения в качестве статистических данных различных объектов нечисловой природы. Этот термин применяем к объектам, которые нецелесообразно рассматривать как описанные числами. Другими словами, речь идет об элементах пространства, не являющихся линейными (векторными). Примеры: бинарные отношения (ранжировки, разбиения, толерантности и т. д.); множества; нечеткие множества; результаты измерений в шкалах, отличной от абсолютной; как обобщение перечисленных объектов - элементы пространств общей природы. Для результатов наблюдений, являющихся объектами нечисловой природы, рассматривают [1] классические задачи статистики: описание данных (включая классификацию) оценивание (параметров, характеристик, плотности распределения, регрессионной зависимости и т. д.).

Математический аппарат статистики объектов нечисловой природы основан не на свойстве линейности пространства, а на применении симметрик и метрик в нем, поэтому существенно отличается от классического.

В прикладных работах наиболее распространенный пример объектов нечисловой природы - разнотипные данные. В этом случае реальный объект описывается вектором, часть координат которого - значения количественных признаков, а часть - качественных (номинальных и порядковых).

Основная цель настоящего раздела - обосновать новый подход [3] к классификации в пространствах произвольной природы, основанный на построении не параметрических оценок плотности распределений вероятности в таких пространствах [4].

" Пусть

- измеримое пространство,.
и
. суть
-конечные меры на
., причем
абсолютно непрерывна относительно
, т. е. из равенства.
. =0 следует равенство
=0, где
.. В этом случае на
существует неотрицательная измеримая функция такая, что

для любого

Функция называется производной Родона-Никодима меры
по мере
, а в случае, когда
- вероятностная мера, также плотностью вероятности
по отношению к
. " [5]

Будем считать, что в пространстве объектов нечисловой природы фиксирована некоторая мера

, а мера
соответствует распределению Р случайного элемента
со знаниями в измеримом пространстве
, т. е.

Если -

пространство из конечного числа точек, то в качестве меры
можно использовать считающую меру (приписывающую единичный вес каждой точке), т. е.
, или

В случае считающей меры значение плотности в точке

совпадает с вероятностью попасть в точку
, т. е.

Многие методы классификации используют расстояния или меры близости между объектами или признаками. Такие методы пригодны и для классификации объектов нечисловой природы, лишь бы в соответствующем пространстве было определено расстояние или мера близости. Таким образом, широко известные иерархические агломеративные алгоритмы ближайшего соседа, дальнего соседа, средней связи и др., результатом работы которых являются дендрограммы, на самом деле относятся к статистике объектов нечисловой природы.

Не пытаясь рассмотреть все многообразие методов классификации в статистике объектов нечисловой природы (см., например, [6, 7]), сосредоточимся на тех из них, которые используют плотности распределения и их оценки. Зная плотности распределения классов, можно решать основные задачи классификации - как задачи выделения кластеров, так и задачи диагностики. В задачах кластер-анализа можно находить моды плотности и принимать их за центры кластеров или за начальные точки итерационных методов типа динамических сгущений. В задачах диагностики (дискриминации, распознавания образов с учителя) можно принимать решения о классификации объектов на основе отношения плотностей, соответствующих классам. При неизвестных плотностях представляется естественным использовать их состоятельные оценки. Корректность такой постановки, как правило, нетрудно обосновать, например, в стиле [8]. Таким образом, для переноса на пространства произвольной природы основных методов классификации рассматриваемого типа достаточно уметь оценивать плотность распределения вероятности в таких пространствах.

Методы оценивания плотности вероятности в пространствах общего вида предложен и первоначально изучены в [4]. В частности, в задачах классификации объектов нечисловой природы предлагаем использовать непараметрические ядерные оценки плотности типа Парзена-Розенблатта (этот вид оценок и его название введены нами в [4]):

,

где К:

- ядерная функция
- выборка по которой оценивается плотностью,
- расстояние между элементом выборки
и точкой
, в которой оценивается плотность последовательность
показателей размытости такова, что при
0 и n
, а
- нормирующий множитель, обеспечивающий выполнение условия

Оценки типа Парзена-Розенблатта - частный случай линейных оценок [4]. В теоретическом плане они выделяются тем, что удается получать результаты такого же типа, что в классическом одномерном случае (

), но, разумеется, с помощью совсем иного математического аппарата.

Одна из основных идей состоит в том, чтобы согласовать между собой расстояние

и меры
. А именно, рассмотрим шары радиуса

и их меры

Предположим, что

как функция
при фиксированном
непрерывна и строго возрастает. Введем функцию

Это - монотонное преобразование расстояния, а потому

- метрика или симметрика (т. е. неравенство треугольника может быть не выполнено), которую, как и
, можно рассматривать как меру близости между
и
.

Введем

.

Поскольку

определена однозначно, то

^

где

., а потому

Переход от

к
напоминает классическое преобразование, использованное Н. В. Смирновым,
, переводящее случайную величину
с непрерывной функцией распределения
в случайную величину
, равномерно распределенную на [ 0, 1]. Оба рассматриваемых преобразования существенно упрощают дальнейшие рассмотрения.

Преобразование

зависит от точки
, что не влияет на дальнейшие рассуждения, поскольку ограничиваемся изучением сходимости в точке.

Функцию

, для которой мера шара радиуса
равна
, называют [4] естественным показателем различия или естественной метрикой. В случае пространства
и евклидовой метрики
имеем

где

-объем шара единичного радиуса в
.

Поскольку можно записать, что

где

то переход от

к
соответствует переходу от
к
. Выгода от такого перехода заключается в том, что утверждения приобретают более простую формулировку.

ТЕОРЕМА 1. Пусть

- естественная метрика,

Плотность

непрерывна в
и ограничена на
, причем
. Тогда
, оценка
является состоятельной, т. е.
по вероятности при
,

Теорема 1 доказана в [4]. Однако остается открытым вопрос о скорости сходимости ядерных оценок, т. е. о поведении величины

и об оптимальном выборе показателей размытости

.

Введем круговое распределение

и круговую плотность
.

ТЕОРЕМА 2. Пусть ядерная функция

непрерывна и
при
. Пусть круговая плотность допускает разложение

причем остаточный член равномерно ограничен [0, 1,....,

]. Пусть

Тогда

Величина

достигает минимума, равного

при

что совпадает с классическими результатами для

(см. [9, с316]). Заметим, что для уменьшения смещения оценки приходится применять знакопеременные ядра
.

В случае дискретных пространств естественных метрик не существует. Однако можно получить аналоги теорем 1 и 2 переходя к пределу не только по объему выборки

, но и по параметру дискретности
.

Пусть

- последовательность конечных пространств,
- расстояния в

для любого
.

Положим

,

,

,

Тогда функции

кусочно постоянны и имеют скачки в некоторых точках
, причем
.

ТЕОРЕМА 3. Если

при
(другими словами,
при
), то существует последовательность параметров дискретности
такая, что при
,
,
справедливы заключения теорем 1 и 2.

ПРИМЕР 1. Пространство

всех подмножеств конечного множества
из
элементов допускает [10, Пар 4. 3] аксиоматическое введение метрики
, где
- символ симметрической разности множеств. Рассмотрим непараметрическую оценку плотности типа Парзена - Розенблатта
, где
- функция нормального стандартного распределения. Можно показать, что эта оценка удовлетворяет условиям теоремы 3
.

ПРИМЕР 2. Рассмотрим пространство функций

, определенных на конечном множестве
со значениями в конечном множестве
. Это пространство можно интерпретировать как пространство нечетких множеств [11]. Очевидно,
. Будем использовать расстояние
. Непараметрическая оценка плотности имеет вид:
.

Если

,
, то при
выполнены условия теоремы 3, а потому справедливы теоремы 1 и 2.

. ПРИМЕР 3. Рассматривая пространства ранжировок

объект непреов, в качестве расстояния
между ранжировками
и
. Тогда
. не стремиться к 0 при
., условия теоремы 3 не выполнены.

Пространства разнотипных признаков - это декартово произведение непрерывных и дискретных пространств. Для него возможны различные постановки. Пусть, например, число градаций качественных признаков остается постоянным. Тогда непараметрическая оценка плотности сводится к произведению частоты попадания в точку в пространстве качественных признаков на классическую оценку Парзена-Розенблатта в пространстве количественных переменных. В общем случае расстояние

можно, например, рассматривать как сумму евклидова расстояния
между количественными факторами, расстояния
между номинальными признаками (
, если
и
, если
) и расстояния
между порядковыми переменными (если
и
- номера градаций., то
.

Наличие количественных факторов приводит к непрерывности и строгому возрастанию

, а потому для непараметрических оценок плотности в пространствах разнотипных признаков справедливы теоремы 1 - 3.

Литература

1.Орлов А.И. Устойчивость в социально-экономических моделях.-М.Наука,1979.-296 с.

2.Орлов А.И. Экспертные оценки / Вопросы кибернетики. Вып.58.-М.: Научный Совет СССР по комплексной проблеме "Кибернетика", 1979.С.17-33.

3.Орлов А.И. / Тезисы докладов Четвертой международной Вильнюсской конференции по теории вероятностей и математической статистике: Том 2.-Вильнюс, Вильнюсский госуниверситет, 1985.С.278-280.

4.Орлов А.И. / Анализ нечисловой информации в социологических исследованиях.-М.Наука, 1985.С.58-92.

5.Орлов А.И. / Статистика. Вероятность. Экономика.-М.Наука,1985. С.99-107.

6.Орлов А.И. / Заводская лаборатория. 1987.Т.58. N3.С.90-91.

7.Орлов А.И. /Надежность и контроль качества. 1987.N6.С.54-59.

8.Рекомендации. Прикладная статистика. Методы обработки данных. Основные требования и характеристики.- М.:ВНИИС,1987.-64 с.

9.Кривцов В.С., Фомин В.Н., Орлов А.И. / Стандарты и качество. 1988.N3.С.32-36.

11.Колмогоров А.Н. Статистический приемочный контроль при допустимом числе дефектных изделий, равном нулю. - Л.: ДНТП, 1951. - 22 с.

12. Гнеденко Б.В. Математика и контроль качества продукции.- М.: Знание, 1978. - 64 с.

13. Беляев Ю.К. Вероятностные методы выборочного контроля.-М.: Наука, 1975. - 408 с.

14. Лумельский Я.П. Статистические оценки результатов контроля качества. - М.: Из-во стандартов, 1979. - 200 с.

15. Орлов А.И. Современные проблемы кибернетики: Прикладная статистика. - М.: Знание, 1981. с 3-14.

16. Статистические методы анализа экспертных оценок / Ученые записки по статистике, т. 29, -М.: Наука, 1977-384 с. 17.

17.Экспертные оценки в системных исследованиях / Сборник трудов. - Вып. 4. - М.: ВНИИСИ, 1970 - 120 с.

18. Экспертные оценки / Вопросы кибернетики. - Вып. 58. - М.: Научный Совет АН СССР по комплексной проблеме / "Кибернетика". 1979. - 200 с.

СКАЧАТЬ ДОКУМЕНТ

ДОБАВИТЬ КОММЕНТАРИЙ  [можно без регистрации]
перед публикацией все комментарии рассматриваются модератором сайта - спам опубликован не будет

Ваше имя:

Комментарий

Copyright © MirZnanii.com 2015-2017. All rigths reserved.