регистрация / вход

Построение эпюр поперечных сил и изгибающих моментов

Министерство науки и образования Республики Казахстан Алматинский колледж строительства и менеджмента Кафедра технических дисциплин Контрольная РАБОТА НА ТЕМУ:

Министерство науки и образования Республики Казахстан

Алматинский колледж строительства и менеджмента

Кафедра технических дисциплин

Контрольная РАБОТА НА ТЕМУ:

«Построение эпюр поперечных сил и изгибающих моментов»

Руководитель:

преподаватель Косс М.С.

Выполнил:

Джиланкозов Ташбулат

Алматы 2009 год


Задача № 1

Построить эпюры внутренних усилий Q и М для балки изображенной на следующем чертеже (рис. 1): F=5кН F=5кН


A B

C D

X1

RA RB

X 2


X 3

а =2м а =2м а =2м


Эпюра «Q»


4

-4

Эпюра «М»


Рис. 1

Решение:

I . Составляем уравнение равновесия и определяем опорные реакции R A и R B.


Σ MA = F1 • a + F2 • 2a – RB • 3a = 0;

отсюда RB = F1 • a + F2 • 2a = 5• 2 + 5 • 2 • 2 = 5 кН ;

3a 3 • 2

Σ M В = R А • 3a – F1 • 2a – F2 • a = 0;

отсюда R А = F1 • 2a – F2 • a = 5 • 2 • 2 + 5• 2 = 5 кН .

3 a 3 • 2

Проверка:

ΣУ = R А – F 1 – F 2 + RB = 0;

ΣУ = 5 – 5 – 5 + 5 = 0.

II . Проводим сечения х1, х2, х3 и определяем внутренние усилие для построения эпюры “Q ”:

0 ≤ х1 ≤ 2м (участок АС)

х1 = 0; Q х1 = RA = 5кН;

х1 = 2м; Q х1 = RA = 5кН;

2м ≤ х2 ≤ 4м (участок CD)

х2 = 2м; Q х2 = R А – F 1 = 5 – 5 = 0;

х2 = 4м; Q х2 = R А – F 1 = 5 – 5 = 0;

4м ≤ х3 ≤ 6м (участок DB)

х3 = 4м; Q х3 = R А – F 1 – F 2 = 5 – 5 – 5 = - 5;

х3 = 6м; Q х3 = R А – F 1 – F 2 = 5 – 5 – 5 = - 5.

III . В проведённых сечениях определяем внутренние усилие для построения эпюры “М”:

0 ≤ х1 ≤ 2м (участок АС)

х1 = 0; M х1 = R А • х1 = 5 • 0 = 0;

х1 = 2м; M х1 = R А • х1 = 5 • 2 = 10кН • м;

2м ≤ х2 ≤ 4м (участок CD)

х2 = 2м; M х2 = R А • х2 – F 1(х2 – а) = 5 • 2 – 5(2 – 2) = 10кН • м;

х2 = 4м; M х2 = R А • х2 – F 1(х2 – а) = 5 • 4 – 5(4 – 2) = 10кН • м;

4м ≤ х3 ≤ 6м (участок DB)

х3 = 4м; M х3 = R А • х3 – F 1(х3 – а) – F 2(х3 –2а) = 5 • 4 – 5(4 – 2) – 5(4 – 2 • 2)= =10кН • м;

х3 = 6м; M х3 = R А • х3 – F 1(х3 – а) – F 2(х3 –2а) = 5 • 6– 5(6 – 2) – 5(6 – 2 • 2)=0

Задача № 2

Построить эпюры внутренних усилий Q и М для балки изображенной на следующем чертеже (рис. 2): А F = 10кН В


С

Х1

RA Х2 RB

L1 = 5м L2 = 5м


L = 10м

Эпюра «Q»

5

- 5


Эпюра «М»


Рис. 2


Решение:

I . Составляем уравнение равновесия и определяем опорные реакции R A и R B.

Σ MA = F • L1 + RB • L = 0;

RB = F • L1 = 10 • 5 = 5 кН ;

L 10

Σ M В = R А L – F • L2 = 0;

R А = F • L2 = 10 • 5 = 5 кН .

L 10

Проверка:

ΣУ = R А – F + RB = 0;

ΣУ = 5 – 10 + 5 = 0.

II . Проводим сечения х1, х2 и определяем внутренние усилие для построения эпюры “Q ”:

0 ≤ х1 ≤ 5м (участок АС)

х1 = 0; Q х1 = RA = 5кН;

х1 = 5м; Q х1 = RA = 5кН;

5м ≤ х2 ≤ 10м (участок CВ)

х2 = 5м; Q х2 = R А – F = 5 – 10 = - 5кН;

х2 = 10м; Q х2 = R А – F = 5 – 10 = - 5кН.

III . В проведённых сечениях определяем внутренние усилие для построения эпюры “М”:

0 ≤ х1 ≤ 5м (участок АС)

х1 = 0; M х1 = R А • х1 = 5 • 0 = 0;

х1 = 5м; M х1 = R А • х1 = 5 • 5 = 25кН • м;

5м ≤ х2 ≤ 10м (участок CВ)

х2 = 5м; M х2 = R А • х2 – F х2 – 10) = 5 • 5 – 10 (5 – 10) = 25кН • м;

2 2

х2 = 10м; M х2 = R А • х2 – F х2 – 10) = 5 • 10 – 10(10 – 10) = 0.

2 2


Задача № 3

Построить эпюры поперечных сил Q и изгибающих моментов М для балки изображённой на следуещем чертеже (рис. 3): g = 4кН/м


A B

gL

Х

R A R B

L = 6м


Эпюра «Q»


12

- 12

Эпюра «М»


Рис .3

Решение:

I . Составляем уравнение равновесия и определяем опорные реакции R A и R B.

Σ MA = g • L • L – RB • L = 0;

2

RB = g • L • L = 4 • 6 = 12 кН ;

2 2

L

Σ M В = R А L – g • L • L = 0;

2

R А = g L L = 4 • 6 = 12кН.

2 2

L

Проверка:

ΣУ = R А – g L + RB = 0;

ΣУ = 12 – 4 • 6 + 12 = 0.

II . Проводим сечения и определяем внутренние усилие для построения эпюр Q и М:

Q

0 ≤ х1 ≤ 6м

х1 = 0; Q х1 = RA g • х = 12 – 4 • 0 = 12 кН;

х1 = L = 3м; Q х1 = RA g • х = 12 – 4 • 3 = 0;

2

х1 = L = 6м; Q х1 = RA g • х = 12 – 4 • 6 = - 12кН ;

М”

х1 = 0; M х1 = R А • х – g • х • х = 12 • 0 – 4 • 0 • 0 = 0;

2 2

х1 = L = 3м; M х1 = R А • х – g • х • х = 12 • 3 – 4 • 3 • 3 = 12кН • м;

2 2 2

х1 = L = 6м; M х1 = R А • х – g • х • х = 12 • 6 – 4 • 6 • 6 = 0;

2 2

Задача № 4

Построить эпюры поперечных сил Q и изгибающих моментов М для балки изображённой на следующем чертеже (рис. 4): F1 =2кН F2 =10кН


A B

C D

X1

RA RB

X2


X3

м 2 м 3 м


Эпюра «Q»

5,7

3,7

-6,3


Эпюра «М»


Рис. 4

Решение:

I . Составляем уравнение равновесия и определяем опорные реакции R A и R B.

Σ MA = F1 • СА + F2 • DA – RB • BA = 0;

RB = F1 • CA + F2 • DA = 2• 2 + 10 • 4 = 6,28 кН ;

BA 7

Σ M В = R А • AB – F1 • CB – F2 • DB = 0;

R А = F1 • CB + F2 • DB = 2 • 5 + 10 • 3 = 5,7 кН .

AB 7

Проверка:

ΣУ = R А + RB F 1 – F 2 = 0;

ΣУ = 5,7 + 6,28 – 2 – 10 = - 0,02 .

II . Проводим сечения х1, х2, х3 и определяем внутренние усилие для построения эпюры “Q ”:

0 ≤ х1 ≤ 2м (участок АС)

х1 = 0; Q х1 = RA = 5,7кН;

х1 = 2м; Q х1 = RA = 5,7кН;

2м ≤ х2 ≤ 4м (участок CD)

х2 = 2м; Q х2 = R А – F 1 = 5,7 – 2 = 3,7кН;

х2 = 4м; Q х2 = R А – F 1 = 5,7 – 2 = 3,7кН;

4м ≤ х3 ≤ 7м (участок DB)

х3 = 4м; Q х3 = R А – F 1 – F 2 = 5,7 – 2 – 10 = - 6,3кН;

х3 = 7м; Q х3 = R А – F 1 – F 2 = 5,7 – 2 – 10 = - 6,3кН.

III . В проведённых сечениях определяем внутренние усилие для построения эпюры “М”:

0 ≤ х1 ≤ 2м (участок АС)

х1 = 0; M х1 = R А • х1 = 5,7 • 0 = 0;

х1 = 2м; M х1 = R А • х1 = 5,7 • 2 = 11,4кН • м;

2м ≤ х2 ≤ 4м (участок CD)

х2 = 2м; M х2 = R А • х2 – F 1(х2 – 2) = 5,7 • 2 – 2(2 – 2) = 11,4кН • м;

х2 = 4м; M х2 = R А • х2 – F 1(х2 – 2) = 5 • 4 – 2(4 – 2) = 18,8кН • м;

4м ≤ х3 ≤ 7м (участок DB)

х3 = 4м; M х3 = R А • х3 – F 1(х3 –2) – F 2(х3 – 4) = 5,7 • 4 – 2(4 – 2) – 10(4 – 4)= =18,8кН • м;

х3 = 7м; M х3 = R А • х3 – F 1(х3 – 2) – F 2(х3 – 4) = 5,7 • 7– 2(7 – 2) – 10(7 – 4)= = - 0,1кН • м.

Задача № 5

Построить эпюры поперечных сил Q и изгибфющих моментов М для балки изображенной на следующем чертеже (рис. 5):

Рис. 5

Решение

I . Составляем расчетную схему балки и определяем опорные реакции Ra и Rb :

Σ MA =0

Σ MA =q• 1/2a+q•2a+F•2a+M-Rb •4a

отсюда Rb = -q•1/2a+q•2a+F•2a+M = -4•2•0.5•2 + 4•2•2 +5•2•2 +10 = 6,75 кН

4a 4•2

Rb =6,75 кН

Σ Mb =0

Σ Mb =-q•3a•3.5a+Ra •4a-F•2a+M

отсюда Ra = q•3a•3.5a+ F•2a-M=4•3•2•3.5•2+5•2•2-10=22,25 кН

4 a 4•2

Ra =22,25 kH

Для проверки определения опорных реакций, составляем сумму проекций всех сил приложенных к балке на вертикальную ось y:

Σ Fy =0

Σ Fy =- q•3a+Ra -F=Rb =-4•3•2+22,75-5+6,75=-24+22,25-5+6,75=0

II . Выделяем характерные точки, вечисляем значения поперечных сил и моментов в сечениях, проходящих через эти точки.

Характерными являются крайняя точка О, опорные сечения А и В и точки приложения нагузок D и E.

Вычисляем значения поперечных сил в сечениях, проходящих через указанные точки.

В сечение О:

Q 0 =0

В сечение А слева:

Q А лев = - q a =-4•2=-8 kH

В сечение А справа:

Q А прав = - q a + Ra =-4•2+22,25 kH

(в сечение А справа имеет место скачек равный величине опорной реакции Ra )

В сечение D слева:

QD лев = - q •3 a + Ra =-4•3•2+22,25=-1,75 kH

В сечение D справо:

QD прав = - q •3 a + Ra - F =-4•3-2+22,25-5=--6,75 kH

(в сечение D справо имеет место скачок равный величине приложенной силы F=5 kH)

На участке AD, как и на консоле ОА, эпюра поперечных сил ограничивается наклонной прямой, т.к. на обоих участках действует равномерно распределенная нагрузка. Наклон прямых на участках ОА и AD одинаков, в связи с равной интенсивностью распределенной нагрузки. В точке С сила Q имеет нулевое значение; расстояние до него определяем из подобия треугольных элнментов эпюры на участке АD. В сечение В поперечная сила отрицательна и численно равна Rb =6,75kH

Вычисляем значение моментов по характерным точкам:

В сечение О:

Мо =0

В сечение А:

МА =- q a •а/2=-4•2•2/2=-8кН•м

(в сечение А на консоли эпюра М имеет вид параболы, т.к. консоль загружена равномерно распределенной нагрузкой)

В сечение С:

Мс = - q •2,5 a •2,5а/2+ Ra •1,5 a =-4•2,5•2•2,5•2+22,25•1,5•2=16,75 kH •м

В сечение D: 2

M =-q •3a•1,5a+Ra •2a=-4•3•2•1,5•2+12,25•2•2=-23

На участке АD ето значение момента является МАХ. На эпюре моментов в этом сечении (в точке С) имеет место перегиб. Эпюра моментов имеет вид параболы.

В сечение Е слева:

МЕ лев =- q •3 a •2,5 a + Ra •3 a - F a =-4•3•2•2,5•2+22,25•3•2=13,5 kH м

В сечение Е справа:

МЕ прав = МЕ лев +М=13,5+10=23,5кН•м

На участке DE и ЕВ свободных от распределенной нагрузки, эпюра моментов ограничена прямыми наклонными линиями; в сечении Е имеет место скачек на величину приложенной пары сил М=5кНм.


Список использованной литературы

1. Ляпунов А.М. «Сборник задач по технической механике».

2. Жарковский Б.И. «Курс лекций по технической механике».

3. Мухин В.С., Саков И.А. «Техническая механика».

4. Д.В.Бычков, М.О.Миров: «Теоретическая механика».

5. Н.С.Улитин: «Сопротивление материалов».

ОТКРЫТЬ САМ ДОКУМЕНТ В НОВОМ ОКНЕ

ДОБАВИТЬ КОММЕНТАРИЙ [можно без регистрации]

Ваше имя:

Комментарий