Смекни!
smekni.com

Кислородно-водородный ЖРД НМ60 (стр. 1 из 3)

Московский Государственный Технический Университет им. Н.Э. Баумана
Реферат

по КСМУ

на тему:

“Кислородно-водородный ЖРД НМ60”

Преподаватель: Медведев В.Е.

Студент : Мельников Сергей

Группа : М1-52

— 1999 г. —

Исследования, проводимые в Европе в области ракет-носителей, показывают необходимость разработки кислородно-водородного двигателя большой тяги для эксплуатации в 90-годы.

Для выявления потенциальных технических проблем, начиная с 1978 года проводились предварительные исследования кислородно-водородного ЖРД с тягой 500 кН. В 1980 году было принято решение о разработке семейства РН Ариан-5 (рис.1), на которой предполагается использование разгонных блоков первой ступени РН Ариан-4 и нового кислородно-водородного блока Н60 (рис.2) на второй ступени. На рис.1 под каждой модификацией РН указана ее грузоподъемность (кг) и соответствующая орбита: LEO – низкая околоземная; GTO – переходная к стационарной.

Предварительные исследования по двигателю блока были начаты в 1981 году. Разработку планировалось начать в 1984 году, а закончить в 1991 году с тем, чтобы первый пуск Ариан-5 осуществить в 1993-1994 году.

Ниже рассматриваются основные результаты предварительных исследований по созданию ЖРД НМ60.

ЖРД должен удовлетворять следующим основным требованиям:

а) удельный импульс в вакууме - 4346 Нсек/кг;

б) номинальная тяга в вакууме – 800 кН; с возможностью дросселирования в полете до 600 кН;

в) перспективный уровень тяги в вакууме – 1300 кН. Данная тяга необходима для использования ЖРД на первой ступени перспективных РН и достигается увеличением давления в камере сгорания. Таким образом, первоначальная конфигурация с тягой 800 кН разрабатывается в условиях минимального технического риска;

г) длина и максимальный диаметр не более 4,0 и 2,4 м, соответственно, что обеспечивает безопасное разделение ступеней в полете. В перспективе предполагается использовать выдвигаемый насадок сопла;

д) критическим на входе в насос окислителя принято избыточное давление 1,5 х 105 Па и в насос горючего 0,5 х 105 Па, что позволяет обойтись без преднасосов;

е) ЖРД должен допускать многократное использование.

В процессе предварительных исследований рассматривались три схемы двигателя:

1) ЖРД с использованием на турбине пара водорода, полученного в тракте охлаждения, принципиальная схема которого представлена на рис.3,а; 2) ЖРД с дожиганием генераторного газа (рис.3в); 3) ЖРД без дожигания генераторного газа (рис.3б), где 1 – насос горючего; 2 – насос окислителя; 3 – турбина горючего; 4 – парообразный водород; 5 – турбина насоса окислителя; 6 – газогенератор.

Принципиальными преимуществами ЖРД первой из рассмотренных схем (рис.3,а) являются: простота, предельно низкая стоимость производства и относительной низкий уровень давления в насосах, необходимый для заданного давления в камере сгорания. Тем не менее, предварительные исследования показывают, что тепловой энергии, снятой со всей поверхности камеры сгорания, включая сопло, не достаточно для подачи топлива в камеру сгорания с давлением 100 х 105 Па.

На рис.3,в представлена схема ЖРД с дожиганием генераторного газа. Камера сгорания в этом случае питается двумя отдельными турбонасосами, работающими на газе, полученном в предкамере, объединенной с турбонасосом жидкого водорода. Для данной схемы ЖРД рассматривались конфигурации турбонасосов, подобные ЖРД ТКА Space Shuttle, но без преднасосов, что объясняется требованиями к двигателю. Камера сгорая имеет регенеративное охлаждение, для чего используется 20% топлива, а 6% его идет на охлаждение сопла с последующим сбросом горячего пара.

На рис.4 приведен общий в ид ЖРД НМ60 с дожиганием генераторного газа (А) и без дожигания (В).

На рис.5 представлена принципиальная схема ЖРД без дожигания генераторного газа, где 1 – наддув окислителя; 2 – жидкий кислород; 3 – турбонасос окислителя; 4 – магистраль гелия; 5 – система продувки магистрали жидкого кислорода; 6 – система продувки магистрали жидкого водорода; 7 – жидкий водород; 8 – турбонасос горючего; 9 – наддув бака горючего; 10 – клапан регулирования соотношения компонентов; 11 – пиротехническая система запуска и раскручивания турбины; 12 – газогенератор; 13 – клапан продувки магистрали жидкого кислорода; 14 – клапан продувки магистрали жидкого водорода; 15 – система запуска; 16 – клапаны управления впрыском компонентов в газогенератор; 17 – главный клапан окислителя; 18 – главный клапан горючего; 19 – сопло, охлаждаемое жидким водородом с последующим его сбросом. Конструкция и технология изготовления камеры сгорания данной схемы, как и схемы с дожиганием генераторного газа, аналогичны маршевому двигателю ТКА Space Shuttle (SSME). Основные характеристики двух анализируемых схем ЖРД приведены в табл.1, где также для сравнения даны характеристики маршевого ЖРД ТКА Space Shuttle (SSME). Можно видеть, что для обеих схем уровни давления ниже, чем у SSME.

Таблица 1. Сравнение вариантов ЖРД НМ60 и ЖРД SSME

НМ 60 без дожигания

НМ 60 с дожиганием

SSME

Тяга в вакууме, кН

800

1300

800

1300

2092(100%)

Тяга на уровне моря, кН

624

1054

654

1104

1669

Соотношение компонентов

5,12

5,12

5,58

5,58

6.0

Камера сгорания:

Давление в камере сгорания х 105 Па

Отношение площадей

100

103,7

160

103,7

125

124,4

203

124,4

205

77.5

Газогенератор: Давление х 105 Па Соотношение компонентов

50,6

0,9

115,6

0,9

194

0,68

355

0,9

356

0,81

Турбонасосы (Н):

Давление на выходе х 105 Па

Скорость вращения, об/мин

143/122

30000/

11700

243/218

40500/

16140

225/153

(257)

25000/

21900

415/248

(486)

35000/

31100

413/296

(480)*

34700/

27500

Мощность турбины, мВт

7,6/2,0

21,2/5,6

10,8/2,8

32,4/8,6

45,5/18,6

* - Давление на выходе второй ступени насоса окислителя.

На рис.6 приводятся характеристики двух схем ЖРД в диапазоне от 900 кН (6) до 1300 кН, где по оси ординат отложен удельный импульс [х 9.81 Нсек/кг], по оси абсцисс – давление в камере сгорания [x 105 Па], 1 – теоретический удельный импульс; 2 – двигатель с оптимальной степенью расширения (отношение площадей среза и критической части) с дожиганием генераторного газа; 3 – двигатель с дожиганием и с фиксированной степенью расширения; 4 – двигатель с оптимальной степенью расширения без дожигания; 5 – двигатель без дожигания с фиксированной степенью расширения; 6 – номинальная тяга; 7 – максимальная тяга.

Уменьшение удельного импульса для двигателя без дожигания генераторного база объясняется увеличением необходимого количества основных компонентов топлива для газогенератора. Обе схемы двигателя оптимизированы при тяге равной 800 кН.

Для двигателя без дожигания разработка, включая создание стендов, потребует 7,5 лет и 8,75 лет для двигателя с дожиганием. Кроме того, ЖРД с дожиганием для уровня тяги 800 кН имеет на 25% большую стоимость разработки и на 20) большую стоимость изготовления. Имея ввиду степень технического риска и стоимостные характеристики, для ЖРД НМ60 была выбрана схема без дожигания генераторного газа. В результате предварительных исследований были сформулированы новые требования:

1) номинальная тяга в вакууме – 900 кН;

2) ЖРД должен дополнительно обеспечивать следующие функции:

а) управление по каналам тангажа и рысканья, используя карданов подвес;

б) наддув топливных баков основными компонентами;

в) обеспечение расхода 1 50кг/сек для управления по крену;

3) тяга и соотношение компонентов должны удовлетворять проектным и эксплуатационным органичениям, представленным на рис.7, где по оси ординат отложена тяга (кН), по оси абсцисс – соотношение компонентов; 1 – проектные ограничения; 2 – ограничения квалификационных испытаний; 3 – эксплуатационные ограничения; 4 – номинальные условия;

4) при выборе проектные решений предпочтение должно отдаваться вариантам с минимальной стоимостью производства;