Смекни!
smekni.com

Технологический расчет магистрального нефтепровода (стр. 1 из 5)

Министерство образования и науки РТ

Альметьевский государственный нефтяной институт

Кафедра транспорта и хранения нефти и газа

КУРСОВОЙ ПРОЕКТ

по дисциплине:

«Проектирование газонефтепроводов»

на тему:

«Технологический расчёт магистрального нефтепровода»

2009


Содержание

1. Введение

2. Определение оптимальных параметров магистрального нефтепровода

2.1 Определение диаметра трубопровода

2.2 Выбор насосного оборудования

2.3 Определение толщины стенки трубопровода

3. Расчет на прочность и устойчивость магистрального нефтепровода

4. Определение числа нефтеперекачивающих станций (НПС)

5. Построение совмещенной характеристики магистрального нефтепровода и перекачивающих станций

6. Расстановка станций по трассе магистрального нефтепровода

7. Расчет эксплуатационных режимов магистрального нефтепровода

8. Выбор рациональных режимов эксплуатации магистрального нефтепровода

Вывод

Список используемой литературы


1. Введение

В современных условиях нефть и нефтепродукты являются массовыми грузами, в связи, с чем вся система транспорта призвана обеспечивать бесперебойную доставку их на нефтеперерабатывающие, нефтехимические заводы и с заводов или с месторождений до потребителей в минимальные сроки, наиболее дешевым способом, без порчи их в пути и с наименьшими потерями. Поэтому роль трубопроводного транспорта в системе нефтяной и газовой промышленности чрезвычайно велика. Для нефти трубопроводный транспорт является основным видом транспорта в нашей стране.

Современные магистральные трубопроводы представляют собой самостоятельные транспортные предприятия, оборудованные комплексом головных, промежуточных перекачивающих насосных станций большой мощности с необходимыми производственными и вспомогательными сооружениями.

Рассматривая систему трубопроводного транспорта нефти, следует отметить, что ей присущи основные особенности, характерные для больших систем энергетики. К ним относятся взаимосвязь с другими отраслями промышленности, территориальная распределенность, сложность, непрерывность развития и обновления, инерционность и непрерывность функционирования, многоцелевой характер и неравномерность процессов приема и сдачи нефти.

На современном этапе при проектировании систем трубопроводного транспорта нефти необходимо обеспечивать техническую осуществимость в сочетании с передовыми технологиями, экологическую безопасность и экономическую эффективность, а также высокую надежность при эксплуатации, что требует, в свою очередь, высококвалифицированных специалистов в области проектирования, сооружения и эксплуатации магистральных нефтепроводов и хранилищ.

Протяженность трубопроводных магистралей России постоянно увеличивается, осуществляется модернизация и техническое перевооружение ранее построенных трубопроводов, внедряются современные средства связи и управления, совершенствуются технологии транспорта высоковязких и застывающих нефтей, сооружения и ремонта объектов магистральных трубопроводов.


2. Определение оптимальных параметров магистрального нефтепровода

Расчет ведем в соответствии с [6].

Вычисляем значения эмпирических коэффициентов a и b по формулам (3.1.7) и (3.1.8)

b =

= -4,441;

a = lglg(44,4+ 0,8) +4,441·lg273=11,037.

Из формулы (3.1.5) вычисляем расчетную кинематическую вязкость при температуре 272 К по формуле (3.1.6)

;

По формуле (3.1.4) находим температурную поправку

Расчетная плотность нефти будет определяться по формуле (3.1.3)

2.1 Определение диаметра трубопровода

Расчетную часовую пропускную способность нефтепровода определяем по формуле (3.2.1)


Внутренний диаметр нефтепровода вычисляем по формуле (3.3.1), подставляя рекомендуемую ориентировочную скорость перекачки

(рис.3.3.1)

По вычисленному значению внутреннего диаметра, из стандартного ряда принимаем диаметр нефтепровода – 1020 мм.

2.2 Выбор насосного оборудования

В соответствии с найденной расчетной часовой производительности нефтепровода подбираем магистральные и подпорные насосы нефтеперекачивающей станции исходя из условия (3.2.2)

Согласно приложения 2 и 3, выбираем насосы: магистральный насос НМ 5000-210 и подпорный насос НПВ 5000-120.

Напор магистрального насоса (

) составит по формуле (3.2.3)

,

напор подпорного насоса (

) составит

Далее рассчитываем рабочее давление на выходе головной насосной станции по формуле(3.2.3)

Условие (3.2.4) выполняется, т.е. 4,45МПа<6,4МПа.

2.3 Определение толщины стенки трубопровода

По приложению 1 выбираем, что для сооружения нефтепровода применяются трубы Волжского трубного завода по ВТЗ ТУ 1104-138100-357-02-96 из стали марки 17Г1С (временное сопротивление стали на разрыв σвр=510МПа, σт=363 МПа, коэффициент надежности по материалу k1=1,4). Перекачку предполагаем вести по системе «из насоса в насос», то np= 1,15; так как Dн= 1020>1000 мм, то kн = 1,05.

Определяем расчетное сопротивление металла трубы по формуле (3.4.2)

Определяем расчетное значение толщины стенки трубопровода по формуле (3.4.1)

δ =

=8,2 мм.

Полученное значение округляем в большую сторону до стандартного значения и принимаем толщину стенки равной 9,5 мм.

Определяем абсолютное значение максимального положительного и максимального отрицательного температурных перепадов по формулам (3.4.7) и (3.4.8):

(+) =

(-) =

Для дальнейшего расчета принимаем большее из значений,

=88,4 град.

Рассчитаем продольные осевые напряжения σпрN по формуле (3.4.5)

σпрN = - 1,2·10-5·2,06·105·88,4+0,3

= -139,3 МПа.

где внутренний диаметр определяем по формуле (3.4.6)

Знак «минус» указывает на наличие осевых сжимающих напряжений, поэтому вычисляем коэффициент

по формуле (3.4.4)

Ψ1=

= 0,69.

Пересчитываем толщину стенки из условия (3.4.3)


δ =

= 11,7 мм.

Таким образом, принимаем толщину стенки 12 мм.


3. Расчет на прочность и устойчивость магистрального нефтепровода

Проверку на прочность подземных трубопроводов в продольном направлении производят по условию (3.5.1).

Вычисляем кольцевые напряжения от расчетного внутреннего давления по формуле (3.5.3)

194,9 МПа.

Коэффициент, учитывающий двухосное напряженное состояние металла труб определяется по формуле (3.5.2), так как нефтепровод испытывает сжимающие напряжения

0,53.

Следовательно,

МПа.

Так как

МПа, то условие прочности (3.5.1) трубопровода выполняется.

Для предотвращения недопустимых пластических деформаций трубопроводов проверку производят по условиям (3.5.4) и (3.5.5).

Вычисляем комплекс


где R2н= σт=363 МПа.

Для проверки по деформациям находим кольцевые напряжения от действия нормативной нагрузки – внутреннего давления по формуле (3.5.7)

185,6 МПа.

Вычисляем коэффициент

по формуле (3.5.8)

=0,62.

Находим максимальные суммарные продольные напряжения в трубопроводе по формуле (3.5.6), принимая минимальный радиус изгиба 1000 м