регистрация / вход

Математические методы в психологии

Номинальная шкала для подсчета частоты встречаемости наименований или значений признака наблюдений и употребление порядковой шкалы. Применение математических методов к неадекватным данным. Функциональная асимметрия головного мозга у мужчин и женщин.

Задание №1

Определите, к какому типу измерений и к какой шкале относятся следующие данные:

a) Числа, кодирующие темперамент человека.

b) Академический ранг (ассистент, доцент, профессор) как мера продвижения по службе.

c) Числа, показывающие выраженность экстра – интраверсии, нейротизма, психотизма, полученные по методике PEN Г. и С. Айзенк.

d) Метрическая система измерения расстояний.

e) Номера истории болезни.

f) Латентный период решения перцептивной задачи.

Решение:

a) Числа, кодирующие темперамент человека.

Эти числа по типу измерений относятся к номинальной шкале.

Номинальная шкала позволяет подсчитывать частоты встречаемости разных наименований или значений признака и затем работать с этими частотами. Единица измерения, которой мы оперируем – это одно наблюдение.

b) Академический ранг (ассистент, доцент, профессор) как мера продвижения по службе.

В данном случае имеет место употребление порядковой шкалы. Порядковая шкала – это шкала, классифицирующая по принципу «больше – меньше».

Если в шкале наименований было безразлично, в каком порядке расположены классификационные ячейки, то в порядковой шкале они образуют последовательность от ячейки «самое малое значение» к ячейке «самое большое значение» (или наоборот).

Это полностью упорядоченная шкала наименований, она устанавливает отношения равенства между явлениями в каждом классе и отношения последовательности в понятиях больше, меньше между всеми без исключения классами.

Упорядоченные номинальные шкалы общеупотребимы при опросах общественного мнения. С их помощью измеряют интенсивность оценок каких-то психологических свойств, суждений, событий, степени согласия или несогласия с предложенными утверждениями. Весьма часто употребляемая разновидность шкал этого типа – ранговые[1] . Они предполагают полное упорядочение каких-то объектов.

с) Числа, показывающие выраженность экстра – интраверсии, нейротизма, психотизма, полученные по методике PEN Г. и С. Айзенк.

Интервальная шкала – это шкала, классифицирующая по принципу «больше на определенное количество единиц – меньше на определенное количество единиц». Каждое из возможных значений признака отстоит от другого на равном расстоянии[2] .

Шкала интервалов представляет собой полностью упорядоченный ряд с измеренными интервалами между пунктами, причем отсчет начинается с произвольно от выбранной величины (нет абсолютного нуля)[3] .

d) Метрическая система измерения расстояний.

В данном случае также имеет место интервальная шкала.

Интервальная шкала – это шкала, классифицирующая по принципу «больше на определенное количество единиц – меньше на определенное количество единиц». Каждое из возможных значений признака отстоит от другого на равном расстоянии.

Шкала интервалов представляет собой полностью упорядоченный ряд с измеренными интервалами между пунктами, причем отсчет начинается с произвольно от выбранной величины (нет абсолютного нуля).

e) Номера истории болезни.

Эти числа по типу измерений относятся к номинальной шкале.

Номинальная шкала позволяет подсчитывать частоты встречаемости разных наименований или значений признака и затем работать с этими частотами. Единица измерения, которой мы оперируем – это одно наблюдение.

f) Латентный период решения перцептивной задачи.

В данном случае также имеет место интервальная шкала.

Интервальная шкала – это шкала, классифицирующая по принципу «больше на определенное количество единиц – меньше на определенное количество единиц». Каждое из возможных значений признака отстоит от другого на равном расстоянии.

Шкала интервалов представляет собой полностью упорядоченный ряд с измеренными интервалами между пунктами, причем отсчет начинается с произвольно от выбранной величины (нет абсолютного нуля).


Задание №2

В результате исследования понимания прочитанного у учащихся 7-х,

8-х и 9-х классов были получены следующие распределения тестовых оценок:

Интервал

оценок Хi

7 класс (N=29) 8 класс (N=37) 9 класс (N=36)
fi fi fi
200-219 3
180-199 1 4 5
160-179 3 3 7
140-159 4 9 7
120-139 11 7 11
100-119 4 7 2
80-99 4 2 1
60-79 1 3
40-59 1
20-39 1 1

Необходимо:

1. Определить меры положения для каждого распределения.

2. Построив по приведенным данным полигоны частот дифференциального и интегрального распределений для каждого класса, решить, какой из двух типов графиков нагляднее отражает различия между распределениями оценок в каждом классе.

Решение:

1. Первый столбец интервал оценок, остальные – балл за выраженность качества (реализована шкала интервалов).

При распределении испытуемых по классам в один класс попадают сильно различающиеся по первичным оценкам испытуемые. Мы рассмотрели различные приемы перевода качественных психологических признаков в количественные выражения. Следует отметить, что при описании психологических явлений необходимо всегда отдавать себе отчет в том, какая именно шкала используется, поскольку каждый способ обработки экспериментальных данных рассчитан на определенный тип шкал.

Применение математических методов к неадекватным данным приводит к странным, а часто и ложным результатам. Квантификация сложных и далеко не однозначных психологических характеристик накладывает немало ограничений на математические операции с их измерениями.

Математик работает с простыми числами, психолог обязан помнить, что в действительности скрывается за величинами, которыми он оперирует.

1) Первое ограничение – соразмерность количественных показателей, фиксированных разными шкалами в рамках одного исследования. Более сильная шкала отличается от слабой тем, что допускает более широкий диапазон математических операций с числами. Все, что допустимо для слабой шкалы допустимо и для более сильной, но не наоборот. Поэтому, смешение в анализе мерительных эталонов разного типа приводит к тому, что не используются возможности сильных шкал.

2) Второе ограничение связано с формой распределения величины фиксированных описанными выше шкалами, которое предполагается нормальным. Для нормального распределения оценки меры рассеяния совпадают: Мо=Ме=М, в скошенном хвосты распределения не влияют на среднюю (М).

Таким образом, необходимо внимательно изучать форму распределения с точки зрения его отклонения от нормального.

II. Используя понятия интегральной функции распределения и определенного интеграла можно записать

¦ (x) = F¢ (x) или F (x) = p (x1 < X < x2 ) = .

Если определяет заштрихованную область в соответствующих пределах, то

p (х < Х < х +Dх) »¦ (х) Dх.

Это соотношение можно представить в виде простого геометрического толкования для каждого класса.

Рис. 1 График дифференциального распределения результатов проверки техники чтения в 7 классе

Рис. 2 Результаты дифференциального распределения результатов проверки техники чтения в 8 классе

Рис. 3 Результаты дифференциального распределения результатов проверки техники чтения в 9 классе.

Для дискретной случайной величины справедливо следующее равенство:

F (x) = P (X<x) = P (-¥<X<x) = ,

где суммирование распространяется на хi < х.

В промежутке между двумя последовательными значениями Х функция F (х) постоянна. При переходе аргумента х через значение хi F (х) скачком возрастает на величину p (Х = хi ).

Рассмотрим p (х1 £ Х < х2 ). Если х2 > х1 , то очевидно, что

p (Х < х2 ) = p (Х < х1 ) + p (х1 £ Х < х2 ).

Тогда

p (х1 £ Х < х2 ) = p (Х < х2 ) - p (Х < х1 ) =F (х2 ) -F (х1 ),

т.е. вероятность попадания случайной величины в интервал [х1 ; х2 ) равен разности значений интегральной функции граничных точек.

Последнее условие можно использовать для нахождения вероятности p (Х = х1 ) для непрерывной случайной величины. Для этого рассмотрим предел

p (X = x1 ) = ,

т.е. если закон распределения случайной величины есть функция непрерывная, то вероятность того, что случайная величина примет заранее заданное значение, равна нулю.

Здесь видно различие между дискретными и непрерывными случайными величинами. Для дискретных случайных величин, для каждого значения случайной величины существует своя вероятность. И для него справедливо утверждение: событие, вероятность которого равна нулю, невозможно. Для непрерывной случайной величины это утверждение неверно. Как показано, вероятность того, что Х = х1 (где х1 - заранее выбранное число) равна нулю, это событие не является невозможным.

В этой связи невозможно построение графика интегрального распределения поэтому нами будет построена кривая интегрального распределения для 7,8, 9 классов.

Рис. 4 График интегрального распределения результатов техники чтения для 7,8, 9 класса.

Таким образом, можно сделать следующий вывод, что наиболее достоверна дифференциальное распределение полученных результатов.


Задание №3.

Выборка объемом 30 человек, разбитая на две равные группы по признаку пола, прошла функциональную диагностику мозговой активности, в результате которой у 13 женщин и 4 мужчин было выявлено доминирование правого полушария, а у 2 женщин и 11 мужчин — доминирование левого полушария. Проверьте гипотезу о связи функциональной асимметрии головного мозга с полом.

Решение:

Поскольку в обеих выборках n1 и n2 > 11 и диапазоны разброса значений в двух выборках не совпадают между собой, мы можем воспользоваться самым простым критерием для сопоставления двух выборок – критерием Q Розенбаума. Объемы выборок различаются менее чем на 10 человек, так, что ограничение о примерном равенстве выборок также не препятствует нам.

Таблица 1. Показатели выраженности функциональной асимметрии у мужчин и женщин

Группа 1 – мужчины

(n=15 человек)

Группа 2 – женщины (n=15 человек)
Доминирование правового полушария 4 13

Доминирование левого

полушария

11 2

Данные в таблице 1 расположены по степени доминирования того или иного полушария в мужской или женской выборке. Первым более высоким является ряд значений в женской выборке.

Средняя величина в мужской и женской выборке идентична и равна 7,5.

Сформулируем гипотезы.

Формулирование гипотез систематизирует предположения исследователя и представляет их в четком и лаконичном виде [5; с. 24]. Статистические гипотезы подразделяются на нулевые и альтернативные.

Нулевая гипотеза – это гипотеза об отсутствии различий. Она обозначается как Н0 и называется нулевой потому, что содержит число 0:

X1 -X2 =0, где X1 , X2 – сопоставления значение признаков. Таким образом, нулевая гипотеза – это то, что мы хотим опровергнуть, если перед нами стоит задача доказать значимость различий.

Альтернативная гипотеза – это гипотеза о значимости различий. Она обозначается как Н1 . Альтернативная гипотеза – это то, что мы хотим доказать, поэтому иногда ее называют экспериментальной гипотезой.

Сформулируем основные гипотезы:

Н0 : Функциональная асимметрия головного мозга у мужчин не выражена в большей степени, чем у женщин.

Н1 : Функциональная асимметрия головного мозга у мужчин выражена в большей степени, чем у женщин.

Сопоставим ряды значений для определения S1 и S2 .

max 2 = 13

S1 =0

min 1 =4

S2 =1

Производим подсчет эмпирического значения Qэмп = S1 +S2 = 0+1 = 1

По таблице 1 Приложения I [5; с. 316] определяем критическое значение Q для данных n1 и n2 . Если Qэмп равно Q0,05 или превышает его, Н0 отвергается.

В данном случае Qкр = 6

6 (p≤0,01)

Qэмп <Qкр

Следовательно принимается гипотеза Н0 и отвергается гипотеза Н1 .

Функциональная асимметрия головного мозга у мужчин не выражена в большей степени, чем у женщин, следовательно, функциональная асимметрия головного мозга не зависит от признака пола.

Список используемой литературы

1. Ермолаев О.Ю. Математическая статистика для психологов/ О.Ю. Ермолаев.- М.: МПСИ, Флинта, 2002.- 336с.

2. Кутейников А.Н., Математические методы в психологии/А.Н. Кутейников.- М.: Речь, 2008.- 172с.

3. Митина О.В., Математические методы в психологии. Практикум: Учебное пособие/О.В. Митина.- М.: Издательство Аспект – пресс, 2008.- 238с.

4. Наследов А.Д., Математические методы в психологии: Учебное пособие/ А.Д. Наследов.- Спб: Речь, 2004.- 232с.

5. Сидоренко Е.В., Методы математической обработки в психологии/ Е.В. Сидоренко.- М.: Речь, 2006.- 350с.

6. Суходольский Г.В., Математические методы в психологии: Учебное пособие/ Г.В. Суходольский.- М.: Гуманитарный центр, 2008.- 284с.

7. Титкова Л.С., Математические методы в психологии/ Л.С. Титкова.- Владивосток: Издательство ДВГУ, 2002.- 140с.


1. Титкова Л. С., Математические методы в психологии/ Л. С. Титкова.- Владивосток: Издательство ДВГУ, 2002.- с. 12.

2 Там же, с. 12

3 Там же, с. 12

ОТКРЫТЬ САМ ДОКУМЕНТ В НОВОМ ОКНЕ

ДОБАВИТЬ КОММЕНТАРИЙ [можно без регистрации]

Ваше имя:

Комментарий