Смекни!
smekni.com

Блок усиления мощности нелинейного локатора (стр. 2 из 6)

, (3.3.7)

Ёмкость коллекторного вывода:


Ёмкость эмитерного вывода:


(3.3.8)

(3.3.8)


Проводимость :

. (3.3.9)


Проводимости и оказываются много меньше проводимости нагрузки усилительных каскадов, в расчётах они обычно не учитываются.

Проведя расчёт по формулам 3.3.6 ¸ 3.3.9, получаем значения элементов схемы:


пФ

пФ

Расчёт высокочастотной модели:

Поскольку рабочие частоты усилителя заметно больше частоты

, то из эквивалентной схемы можно исключить входную ёмкость, так как она не влияет на характер входного сопротивления транзистора. Индуктивность же выводов транзистора напротив оказывает существенное влияние и потому должна быть включена в модель. Эквивалентная высокочастотная модель представлена на рисунке 3.4. Описание такой модели можно найти в [2].

Рисунок 3.4

Параметры эквивалентной схемы рассчитываются по приведённым ниже формулам.

Входная индуктивность:

, (3.3.10)

где

–индуктивности выводов базы и эмиттера.

Входное сопротивление:

, (3.3.11)

Крутизна транзистора:

, (3.3.12)

Выходное сопротивление:

. (3.3.13)

Выходная ёмкость:

. (3.3.14)

В соответствие с этими формулами получаем следующие значения элементов эквивалентной схемы:

нГн;

пФ;

Ом;

А/В;

Ом;

пФ.

3.3.4 Расчёт цепей термостабилизации и выбор источника питания

Существует несколько вариантов схем термостабилизации. Их использование зависит от мощности каскада и от того, насколько жёсткие требования к термостабильности. В данной работе рассмотрены три схемы термостабилизации: пассивная коллекторная, активная коллекторная и эмиттерная.

3.3.4.1 Пассивная коллекторная термостабилизация

Данный вид термостабилизации (схема представлена на рисунке 3.4) используется на малых мощностях и менее эффективен, чем две другие, потому что напряжение отрицательной обратной связи, регулирующее ток через транзистор подаётся на базу через базовый делитель.

Рисунок 3.5

Расчёт, подробно описанный в [3], заключается в следующем: выбираем напряжение

(в данном случае
В) и ток делителя
(в данном случае
, где
– ток базы), затем находим элементы схемы по формулам:

; (3.3.15)

, (3.3.16)

где

– напряжение на переходе база-эмиттер равное 0.7 В;

. (3.3.17)

Получим следующие значения:

Ом;

Ом;

Ом.

3.3.4.2 Активная коллекторная термостабилизация

Активная коллекторная термостабилизация используется в мощных каскадах и является очень эффективной, её схема представлена на рисунке 3.5. Её описание и расчёт можно найти в [2].

Рисунок 3.6

В качестве VT2 возьмём КТ916А. Выбираем падение напряжения на резисторе

из условия
(пусть
В), затем производим следующий расчёт:

; (3.3.18)

; (3.3.19)

; (3.3.20)

; (3.3.21)

, (3.3.22)

где

– статический коэффициент передачи тока в схеме с ОЭ транзистора КТ361А;

; (3.3.23)

; (3.3.24)

. (3.3.25)

Величина индуктивности дросселя выбирается таким образом, чтобы переменная составляющая тока не заземлялась через источник питания, а величина блокировочной ёмкости – таким образом, чтобы коллектор транзистора VT1 по переменному току был заземлён.

3.3.4.3 Эмиттерная термостабилизация

Принцип действия эмиттерной термостабилизации представлен на рисунке 3.6. Метод расчёта и анализа эмиттерной термостабилизации подробно описан в [3].

Рисунок 3.7

Расчёт производится по следующей схеме:

1.Выбираются напряжение эмиттера

и ток делителя
(см. рис. 3.7), а также напряжение питания
;

2. Затем рассчитываются

.

3. Производится поверка – будет ли схема термостабильна при выбранных значениях

и
. Если нет, то вновь осуществляется подбор
и
. Возьмём
В и
мА. Учитывая то, что в коллекторной цепи отсутствует резистор, то напряжение питания рассчитывается по формуле
В. Расчёт величин резисторов производится по следующим формулам:

; (3.3.25)

; (3.3.26)

. (3.3.27)