Затухание ЭМВ при распространении в средах с конечной проводимостью (стр. 1 из 2)

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

Харьковский национальный университет

им. В.Н. Каразина

Радиофизический факультет

КУРСОВАЯ РАБОТА

ПО ЭЛЕКТРОДИНАМИКЕ

«Затухание ЭМВ при распространении в средах с конечной проводимостью»

Руководитель:

Колчигин Н.Н.

Студент группы РР-32

Бойко Ю.В.

Харьков 2004

Содержание

Введение. 4

Основная часть. 5

1. Вывод уравнений для плоских волн. 5

2. Связь характеристик распространения с параметрами среды.. 9

3. Вычисление затухания в данной среде. 14

Список использованной литературы.. 15

ЗАДАНИЕ

1.Изучить общие сведения и формулы.

2.Построить зависимость электрической компоненты поля от глубины проникновения.

3.Вычислить затухание на глубине Н=0,5 м, l=10 м, в пресной воде (e=80, s=10-3 См/м)

Введение

Распространение электромагнитных волн широко рассматривается в литературе, но в ней большое внимание уделяется распространению волн в диспергирующих средах и законам геометрической оптики. В данной работе рассматривается связь характеристик распространения с параметрами среды и затухание элекромагнитных волн в средах с конечной проводимостью
Основная часть

1. Вывод уравнений для плоских волн

Рассмотрим электромагнитный волновой процесс, векторы

и
которого могут быть представлены в виде

=
(x,t),
=
(x,t) (1.1)

Рис. 1.1. Направление распространения плоской волны

Здесь (рис. 1.1.)

есть расстояние от начала координатной системы до плоскости


а

является постоянным единичным вектором. Так как производные по координатам будут равны
и т. д., то

(1.2)

(1.3)

Следовательно, для плоской волны уравнения Максвелла принимают вид

(1.4)

,

Последние два уравнения означают независимость проекций

и
на направление распространения от координаты x, т. е. Ex =const и Hx =const в данный момент времени. Исследуем их по­ведение во времени. Для этого второе уравнение (1.4) умножим скалярно на
:

Так как

то

и

или

, т.е. dHx = 0, Hx = const. Для исследования поведения Ex умножим скалярно первое из уравнений (1.4) на
:

Так как

, получаем

Прибавим к этому равенству

Следовательно, при конечной s компонента Ex экспоненциально убывает со временем, т. е. статическое электрическое поле не может поддерживаться внутри проводника.

Найдем уравнения для

и
отдельно. Для этого продиффе­ренцируем по t первое из уравнений (1.4)

Найдем

из второго из уравнений (1.4), продифференцировав его по x:

Получаем

откуда

, так как

Отсюда следует

(1.6)

Аналогично

(1.7)

Эти уравнения можно решить методом разделения переменных, идем решение для комплексной амплитуды Е поля

, Положив

E=f1 (x)f2 (x)

Получаем

(1.8)

Общее решение для f1 будет

Частное решение для f2 возьмем в виде

Таким образом, решением для

будет выражение

Решая уравнение (1.7), получим аналогичное решение для

Подставив эти значения во второе из уравнений (1.4), получим

откуда

Так как x в этом равенстве может принимать любые значения, коэффициенты при экспонентах должны равняться нулю:

Поэтому

(1.9)

Отсюда следует (

)=0 (так как (
[
])=0), т. е. векторы
и
ортогональны к направлению
и друг к другу.


Copyright © MirZnanii.com 2015-2018. All rigths reserved.