Смекни!
smekni.com

Тиристоры (стр. 1 из 2)

Устройство, принцип работы, обозначения диодных и триодных тиристоров .

Приборы с четырехслойной структурой р-п-р-п представляют собой один из видов многочисленного семейства полупроводниковых приборов, свой­ства которых определяются наличием в толще полупроводниковой пластины смежных слоев с различными типами проводимости. Основу такого прибора со­ставляет кремниевая пластина, имеющая четырехслойную структуру, в которой чередуются слои с дырочной р и электронной n проводимостями (рис. l.a) Эти четыре слоя образуют три р-п перехода J1,J2, J3. Выводы в приборах с че- тырехслойной структурой делаются от двух крайних областей (р и n), а в боль­шинстве приборов - и от внутренней области р.


Крайнюю область р структуры, к которой подключается положительный полюс источника питания, принято называть анодом A , крайнюю область n, к которой подключается отрицательный полюс этого источника,-катодом К, а вывод от внутренней области р-управляющим электродом УЭ. Естественно, что для полупроводникового прибора такие определения носят ус­ловный характер, однако они получили широкое распространение по аналогии с тиратронами и ими удобно пользоваться при описании схем с этими приборами.

Согласно ГОСТ 15133-77 все переключающие полупроводниковые приборы с двумя устойчивыми состояниями, имеющие три или более р-п перехода, на

Рис.. Схематическое устройство полупроводникового прибора с четырехслой- ной структурой (а), представление его в виде двухтранзисторной схемы (б, в)

зываются тиристорами. Приборы с двумя выводами (анод и катод) назы­ваются диодными тиристорами или динисторами, а приборы с тремя выводами (анод, катод, управляющий электрод) - т р и о д н ы м и - тристорами или тринисторами.

Полупроводниковый прибор с четырехслойной структурой может быть мо­делирован комбинацией двух обычных транзисторов с различными типами про­водимости (рис. 1.б.в); VT1 со структурой p-n-pi и VT2 со структурой п-р-п. У транзистора VT1 переход J1 является эмиттерным, а переход J2 коллекторным, у транзистора УТ2 эмиттерным служит переход J3, а коллекторным J2, таким образом, оба транзистора имеют общий коллекторный переход J2 (рис. 1.б). Крайние области четырехслойной полупроводниковой структуры являются эмит­терами, а внутренние-базами и коллекторами составляющих транзисторов VT1 и VT2.

База и коллектор транзистора VT` соединяются соответственно с коллекто­ром и базой транзистора VT2, образуя цепь внутренней положительной обратной связи (рис. 1.б.в). Действительно, из рис. l.в видно, что коллекторный ток Ik1 транзистора VT1 одновременно является базовым током 2, отпирающим тран­зистор VT2, а коллекторный ток Ik2 последнего-базовым током Iб1, отпирающим трамзистор VT1, т. е. база каждого транзистора питается коллек­торным током другого транзистора.

2. Вольт-амперные характеристики .диодных и триодных тиристоров

Режим работы динисторов и тринисторов хорошо иллюстрируется их 'статическими вольт-амперными характеристиками, из которых можно получить представление об основных параметрах этих приборов. На рис. 5,а приведена типовая вольт-амперная характеристика динистора. Здесь по горизонтальной оси .отложено напряжение и между его анодом и катодом (анодное напряжение), а по вертикальной-ток I, протекающий через прибор. Область характеристики при положительных анодных напряжениях образует прямую ветвь, а при отрицательных - обратную ветвь характеристики. На характеристике можно выде­лить четыре участка, обозначенные на рис. 5,a арабскими цифрами, каждый из которых соответствует особому состоянию четырехслойной полупроводниковой структуры.

Участок 1 характеристики соответствует закрытому состоянию (в прямом .направлении) динистора. На этом участке через динистор протекает небольшой ток Iзс -ток прибора в закрытом состоя­нии. В закрытом состоянии сопротивление промежутка анод-катод прибора велико и обратно пропорционально значению тока Iзс . В пределах участка 1 увеличение анодного напряжения мало влияет на ток, пока не будет достигну­то напряжение (точка а характеристики), при котором в четырехслойной по­лупроводниковой структуре наступает лавинообразный процесс нарастания тока, и динистор переключается в открытое состояние. Прямое напряжение, соответствующее точке а характеристики, называется напряжением переключения Uпри, а ток, протекающий при этом через прибор,-током переключения Iпри.

В процессе переключения динистора в открытое состояние незначительное увеличение тока сопровождается быстрым уменьшением напряжения на аноде прибора (участок 2), так как составляющие транзисторы переходят в режим насыщения (рис. l.б.в). Сопротивление динистора в пределах участка 2 стано­вится отрицательным.

Участок 3 вольт-амперной характеристики соответствует открытому состоя­нию прибора. В пределах этого участка все три р-п перехода полупроводнико­вой структуры включены в прямом направлении и относительно малое напря­жение, приложенное к прибору, может создать большой ток Iос в открытом со­стоянии, который при данном напряжении источника питания практически оп­ределяется только сопротивлением внешней цепи. Падение напряжения на от­крытом приборе-напряжение в открытом состоянии Uос, как и у обычного диода, незначительно зависит от прямого тока. Что касается значения наи­большего постоянного тока, который может пропускать прибор в этом режиме, то, как обычно в полупроводниковых структурах, он определяется площадью

р-п перехода и условиями охлаждения прибора.

Динистор сохраняет открытое состояние, пока прямой ток Iпр будет

больше некоторого минимального значения-удерживающего тока Iуд (точка б на характеристике). При снижении тока до значения Iпр < Iуд динистор скач­ком возвратится в закрытое состояние.

Таким образом, динистор может находиться в одном из двух устойчивых состояний. Первое (участок 1) характеризуется большим напряжением на при­боре (Uзс) и незначительным током '(Iзс), протекающим через него, а второе (участок 3) -малым напряжением на приборе (Uос) и большим током (Iос). Рабочая точка на участке 2 вольт-ампердой характеристики находиться не мо* жет.


Участок 4 характеризует собой режим динистора, когда к его электродам приложено напряжение обратной полярности Uобр (плюс к катоду, минус к аноду) , - непроводящее состояние в обратном направлении. Режим полупроводникового прибора с четырехслойной структурой при подаче напряжения обратной полярности определяется запирающими свойства­ми р-п перехода J1 (рис. 1.а). Таким образом, обратная ветвь вольт-амперной характеристики фактически определяет режим перехода J1, включенного в об­ратном направлении, и имеет такой же вид, как и обратная ветвь характерис- тми обычного кремниевого диода. Обратный ток Iобр мал и примерно равен теку в закрытом состоянии. Если увеличивать (по абсолютному значению) 'напряжение Uoбp, то при некотором его значении Uпроб, называемым обрат­ным напряжением пробоя (точка а на участке 4), наступает пробой перехода I1, который может привести к разрушению прибора. Поэтому пода­вать на полупроводниковые приборы с четырехслойной структурой даже на короткое время обратное напряжение, близкое к Uпроб , недопустимо. Наибольшее обратное напряжение, которое может выдерживать прибор, указывается в его паспортных данных и при эксплуатации не должно превышаться.

Рассмотрим теперь семейство статических вольт-амперных характеристик тринистора, изображенное на рис. 5,6. Изменяемым параметром семейства явля­ется значение тока Iy в цепи управляющего электрода.

Вольт-амперная характеристика при токе Iy=0, по существу, представляет собой характеристику динистора и обладает всеми особенностями, рассмотрен­ными выше. При подаче управляющего тока и его последующем увеличении (I"'y>I''y>I'y>Q) участки I и 2 характеристики укорачиваются, а напряже­ние переключения снижается (U"прк<U'прк<Uпрк). Каждая характеристика, соответствующая большему току Iy, располагается внутри предшествующей. Наконец, при некотором значении управляющего тока I'"у вольт-амперная на- рветеристика тринистора вообще «спрямляется» и становится подобной прямой ветви характеристики обычного кремниевого диода (рис 5,6). Соответствующее эначение управляющего тока называется отпирающим током управления 1'"у=1у.от. Следовательно, при подаче такого тока управления тринистор переключается из закрытого состоя­ния в открытое при любом значении прямого (анодного) напряжения, находя­щегося в пределах 0<Uупр<=Uзс.

Управляющий электрод тринистора выполняет роль своеобразного «под­жигающего» электрода (аналогично действию сетки в тиратроне). Причем уп­равляющее действие этого электрода проявляется лишь в момент включения тринистора: закрыть прибор или изменить значение тока, протекающего через открытый прибор, изменяя ток управления, невозможно. (Исключение составля­ет специальный тип приборов--запираемые тиристоры, которые открываются положительным, а закрываются отрицательным сигналами на управляющем элек­троде [2].)

Выключить открытый тринистор можно, как и динистор, только сделав пря­мой ток меньше значения удерживающего тока Iуд (рис. 5.б).

Способ открывания тринисторов током управляющего электрода имеет существенные достоинства, так как позволяет коммутировать большие мощно- сти в нагрузке маломощным управляющим сигналом (коэффициент усиления по мощности составляет примерно 5X102..2X103).