Смекни!
smekni.com

Спектрометрическое сканирование атмосферы и поверхности Земли (стр. 2 из 8)


Таблица

: Технические характеристики сканирующих устройств
Параметры МСУ-М МСУ-С МСУ-СК МСУ-Э
Полоса обзора, км 1930 1380 600 28
Угол сканирования, град 106 90 66,5 2,5
Число элементов в активной части строки 1880 5700 3614 1000
Число спектральных каналов 4 2 4 3
Разрешение на местности по строке, км 1 0,24 0,175 0,028
Масса, кг 4,5 5,5 47 17

Важнейшей характеристикой сканера являются угол сканирования (обзора) и мгновенный угол зрения, от величины которого зависят ширина снимаемой полосы и разрешение. В зависимости от величины этих углов сканеры делят на точные и обзорные. У точных сканеров угол сканирования уменьшают до ±5°, а у обзорных увеличивают до ±50°. Величина разрешения при этом обратно пропорциональна ширине снимаемой полосы.

Хорошо зарекомендовал себя сканер нового поколения, названный "тематическим картографом", которым были оснащены американские ИСЗ "Лэндсат-4 и -5". Сканер типа "тематический картограф" работает в семи диапазонах с разрешением 30 м в видимом диапазоне спектра и 120 м в ИК-диапазрне. Этот сканер дает большой поток информации, обработка которой требует большего времени; в связи с чем замедляется скорость передачи изображения. число пикселов на снимках достигает более 36 млн. на каждом из каналов. Сканирующие устройства могут быть использованы не только для получения изображений Земли, но и для измерения радиации - сканирующие радиометры - и излучения - сканирующие спектрометры.

Радарные съемки

Радиолокационная (РЛ) или радарная съемка - важнейший вид дистанционных исследований. Используется в условиях, когда непосредственное наблюдение поверхности планет затруднено различными природными условиями: плотной облачностью, туманом и т. п. Она может проводиться в темное время суток, поскольку является активной. Для радарной съемки обычно используются радиолокаторы бокового обзора (ЛБО), установленные на самолетах и ИСЗ.

С помощью ЛБО радиолокационная съемка осуществляется в радиодиапазоне электромагнитного спектра. Сущность съемки заключается в посылке радиосигнала, отражающегося по нормали от изучаемого объекта и фиксируемого на приемнике, установленном на борту носителя. Радиосигнал вырабатывается специальным генератором. Время возвращения его в приемник зависит от расстояния до изучаемого объекта. Этот принцип работы радиолокатора, фиксирующего различное время прохождения зондирующего импульса до объекта и обратно, используется для получения РЛ-снимков. Изображение формируется бегущим по строке световым пятном. Чем дальше объект, тем больше времени надо на прохождение отражаемого сигнала до его фиксации электронно-лучевой трубкой, совмещенной со специальной кинокамерой.

При дешифрировании радарных снимков следует учитывать тон изображения и его текстуру. Тоновые неоднородности РЛ-снимка зависят от литологических особенностей пород, размера их зернистости, устойчивости процессам выветривания. Тоновые неоднородности: могут варьировать от черного до светлого цвета. Опыт работы с РЛ-снимками показал, что черный тон соответствует гладким поверхностям, где, как правило, происходит почти полное отражение посланного радиосигнала. Крупные реки всегда имеют черный тон. Текстурные неоднородности РЛ-изображения зависят от степени расчлененности рельефа и могут быть тонкосетчатыми, полосчатыми, массивными и др. Полосчатая текстура РЛ-изображения, например, характерна для горных районов, сложенных часто чередующимися слоями осадочных или метаморфических пород, массивная - для районов развития интрузивных образований. Особенно хорошо получается на РЛ-снимках гидросеть. Она дешифрируется лучше, чем на фотоснимках. Высокое разрешение РЛ-съемки в районах, покрытых густой растительностью, открывает широкие перспективы ее использования. Во многих частях Земли, в частности в затаеженных районах Сибири, Я долине Амазонки и т. п.

Радарные системы бокового обзора с конца 70-х годов стали устанавливать на ИСЗ. Так, например, первый радиолокатор был установлен на американском спутнике "Сисат", предназначенном для изучения динамики океанических процессов. Позднее был сконструирован радар, испытанный во время полетов космического корабля "Шатл". Информация, полученная с помощью этого радара, представляется в виде черно-белых и ложноцветных синтезированных фото-, телеизображений или записей на магнитную ленту. Разрешающая способность 40 м. Информация поддается числовой и аналоговой обработке, такой же, что и сканерные снимки системы "Лэндсат". Это в значительной мере способствует получению высоких результатов дешифрирования. Во многих случаях РЛ-снимки оказываются геологически более информативными, чем снимки "Лэндсат". Наилучший результат достигается и при комплексном дешифрировании материалов того и другого видов. РЛ-снимки успешно используются для изучения трудно- или недоступных территорий Земли - пустынь и областей, расположенных в высоких широтах, а также поверхность других планет.

Классичесими уже стали результаты картирования поверхности Венеры - планеты, покрытой мощным облачным слоем. Совершенствование РЛ-аппаратуры должно повлечь за собой дальнейшее повышение роли радиолокации в дистанционных исследованиях Земли, особенно при изучении ее геологического строения.

Тепловые съемки

Инфракрасная (ИК), или тепловая, съемка основана на выявлении тепловых аномалий путем фиксации теплового излучения объектов Земли, обусловленного эндогенным теплом или солнечным излучением. 0на. широко применяется в геологии. Температурные неоднородности поверхности Земли возникают в результате неодинакового нагрева различных ее участков. Инфракрасный диапазон спектра электромагнитных колебаний условно делится на три части (в мкм):

· ближний (0,74-1,35),

· средний (1,35-3,50)

· дальний (3,50-1000).

Солнечное (внешнее) и эндогенное (внутреннее) тепло нагревает геологические объекты по-разному в зависимости от литологических свойств пород, тепловой инерции, влажности, альбедо и многих других причин. ИК-излучение, проходя через атмосферу, избирательно поглощается, в связи с чем тепловую съемку можно вести только в зоне расположения так называемых "окон прозрачности" - местах пропускания ИК-лучей. Опытным путем выделено четыре основных окна прозрачности (в мкм): 0,74-2,40; 3,40-4,20; 8,0-13,0; 30,0-80,0. Некоторые исследователи выделяют большее число окон прозрачности. в первом окне (до 0,84 мкм) используется отраженное солнечное излучение. Здесь можно применять специальные фотопленки и работать с красным фильтром. Съемка в этом диапазоне называется ИК-фотосъемкой.

В других окнах прозрачности работают измерительные приборы - тепловизоры, преобразующие невидимое ИК-излучение в видимое с помощью электроннолучевых трубок, фиксируя тепловые аномалии. На ИК-изображениях светлыми тонами фиксируются участки с низкими температурами, темными - с относительно более высокими. Яркость тона прямо пропорциональна интенсивности тепловой аномалии. ИК-съемку можно проводить в ночное время. На ИК-снимках, полученных с ИСЗ, четко вырисовывается береговая линия, гидрографическая сеть, ледовая обстановка, тепловые неоднородности водной среды, вулканическая деятельность и т. п. ИК-снимки используются для составления тепловых карт Земли. Линейно-полосовые тепловые аномалии, выявляемые при ИК-съемке, интерпретируются как зоны разломов, а площадные и концентрические - как тектонические или орографические структуры. Например, наложенные впадины Средней Азии, выполненные рыхлыми кайнозойскими отложениями, на ИК-снимках дешифрируются как площадные аномалии повышенной интенсивности. Особенно ценна информация, полученная в районах активной вулканической деятельности. В настоящее время накоплен опыт использования ИК-съемки для изучения дна шельфа. Этим методом по разнице температурных аномалий поверхности воды получены данные о строении рельефа дна. При этом использован принцип, согласно которому при одинаковом облучении поверхности воды на более глубоких участках водных масс энергии на нагревание расходуется больше, чем на более мелких. В результате температура поверхности воды над более глубокими участками будет ниже, чем над мелкими. Этот принцип позволяет на ИК-изображениях выделять положительные и отрицательные формы рельефа, подводные долины, банки, гряды и т. п. ИК-съемка в настоящее время применяется для решения специальных задач, особенно при экологических исследованиях, поисках подземных вод и в инженерной геологии.

Спектрометрическая съемка

Спектрометрическая (СМ) съемка проводится с целью измерения отражательной способности горных пород. Знание значений коэффициента спектральной яркости горных пород расширяет возможности реологического дешифрирования, придает ему большую достоверность. Горные породы имеют различную отражательную способность, поэтому отличаются величиной коэффициента спектральной яркости. СМ-съемка делится на три вида:

1. микроволновая (0,3 см-1,0 м), являющаяся универсальной, Лак. как исключает влияние атмосферы;

2. ИК или тепловая (0,30-1000 мкм), выявляющая температур-иые неоднородности по энергетической яркости изучаемых объектов;

3. спектрометрия видимого и близкого ИК-спектра излучения ;(0,30-1,40 мкм), фиксирующая спектральное распределение отражательного радиационного излучения.

Геологические объекты отражаются на КС с разной степенью контраста, зависящего от их спектральных особенностей. Работа по составлению банка данных о спектральных характеристиках горных пород чрезвычайно трудоемка. Для того чтобы ее выполнить, необходимо произвести спектрометрические измерения горных пород, а также иных ландшафтных объектов, на разных расстояниях, в различные времена года, на участках с различной степенью обнаженности. Эти данные, однако, являются совершенно необходимыми для систем автоматического поиска и распознавания объектов, в том числе и экологического содержания. В настоящее время увеличение пограничных контрастов достигается использованием многозональных снимков, полученных в относительно узких зонах спектра.