Аэродинамическое сопротивление автомобиля (стр. 1 из 4)


СОДЕРЖАНИЕ

Аэродинамическое сопротивление стр.

Часть 1…………………………………………………….3

часть 2…………………………………………………….6

Поле потока вокруг легкового автомобиля……...13

Для чего нужен козырёк? ........................................21

Интересные сводки и аспекты аэродинамики ...23

Вывод………………………………………………………26

Список литературы……………………………………27

Аэродинамическое сопротивление

Часть 1

Аэродинамическое сопротивление автомобиля обусловлено движением последнего с некоторой относительной скоростью в окружающей воздушной среде. Среди всех сил, составляющих сопротивление движению автомобиля, эта представляет наибольший интерес в свете всевозрастающих скоростей передвижения транспортных средств. Дело все в том, что уже при скорости движения 50-60 км/час она превышает любую другую силу сопротивления движению автомобиля, а в районе 100-120 км/час превосходит всех их вместе взятых.

Сразу хотелось бы отметить, что на сегодняшний день не существует методик теоретического расчета силы аэродинамического сопротивления, а поэтому ее величину возможно определить только экспериментально. Конечно, неплохо было бы еще на стадии проектирования произвести количественную оценку аэродинамики автомобиля и изменяя определенным образом форму кузовных деталей оптимизировать ее. Но, увы, решить данную задачку оказалось не так просто. Найти выход из сложившейся ситуации, конечно же, пытались. В частности, путем создания каталогов, где значению аэродинамического сопротивления объекта ставились в соответствие основные параметры его формы. Такой подход оправдывает себя лишь в случаях его применения к относительно простым в аэродинамическом смысле телам. Число же параметров, описывающих геометрию легкового автомобиля, слишком велико, и отдельные поля потоков находятся в весьма сложном взаимодействии друг с другом, так что и в этом случае попытка приручить аэродинамику провалилась.

Применительно к автомобильной технике аэродинамическое сопротивление можно представить как сумму нескольких его составляющих. К ним относятся:

сопротивление формы;

сопротивление трения о наружные поверхности;

сопротивление, вызываемое выступающими частями автомобиля;

внутреннее сопротивление.

Сопротивление формы еще называют сопротивлением давления или лобовым сопротивлением. Сопротивление формы является основной составляющей сопротивления воздуха, оно достигает 60 % общего. Механизм возникновения этого вида сопротивления следующий. При движении транспортного средства в окружающей воздушной среде происходит сжатие набегающего потока воздуха в передней части автомобиля. В результате здесь создается область повышенного давления.

Под его влиянием струйки воздуха устремляются к задней части автомобиля. Скользя по его поверхности, они обтекают контур транспортного средства. Однако в некоторый момент начинает проявляться явление отрыва элементарных струек от обтекаемой ими поверхности и образования в этих местах завихрений. В задней части автомобиля воздушный поток окончательно срывается с кузова транспортного средства. Это способствует образованию здесь области пониженного давления, куда постоянно осуществляется подсос воздуха из окружающего воздушного пространства. Классической иллюстрацией наличия зоны пониженного давления является пыль и грязь, оседающие на элементы конструкции задней части транспортного средства. За счет различия давлений воздуха впереди и сзади автомобиля создается сила лобового сопротивления. Чем позже происходит срыв воздушного потока с обтекаемой поверхности и соответственно меньше область пониженного давления, тем меньшей будет и сила лобового сопротивления.

В этом аспекте интересен следующий факт. Известно, что при езде двух формульных болидов друг за другом, уменьшается не только сопротивление движению заднего автомобиля, идущего в воздушном мешке, но и переднего, по измерениям в аэродинамической трубе - на 27%. Происходит это вследствие частичного заполнения зоны пониженного давления и уменьшения разряжения за ним.

Из вышесказанного понятно, что форма кузова транспортного средства в данном случае играет существенную роль. Кузов автомобиля необходимо изваять таким образом, чтобы процесс перемещения воздуха из передней зоны автомобиля в заднюю происходил с наименьшими затратами энергии, а последние определяются главным образом характером вихреобразования. Чем меньше образуется локальных завихрений, мешающих нормальному перетеканию струек воздуха под действием разности давлений, тем меньше будет и сила лобового сопротивления.

Сопротивление трения обусловлено "прилипанием" к поверхности кузова слоев перемещающегося воздуха, вследствие чего воздушный поток теряет скорость. В этом случае величина сопротивления трения зависит от свойств материала отделки поверхности кузова, а также от его состояния. Дело в том, что любая поверхность обладает различной поверхностной энергией, способной в различной степени повлиять на окружающую среду. Чем больше значение поверхностной энергии у материала покрытия автомобиля, тем сильнее его поверхность взаимодействует на молекулярном уровне с окружающей воздушной средой, и тем больше энергии необходимо затратить на разрушение сил Ван-дер-Ваальса (сил взаимного притяжения молекул), препятствующих взаимному перемещению объемов соприкасающихся веществ. На данный вид потерь приходится около 10 - 20% всех аэродинамических потерь. Меньшие значения сопротивления трения относятся к автомобилям, обладающим новыми, хорошо отполированными покрытиями, большие к автомобилям с плохо окрашенными кузовами или покрытиями, которые с течением времени утратили большинство своих потребительских свойств.

Часть 2

Сопротивление вызываемое выступающими частями автомобиля составляет 10 - 15% общего. Хотя на некоторых экземплярах автомобильной техники оно может принимать и гораздо большее значение. На его величину влияют самые, казалось бы, безобидные конструктивные элементы автомобиля, как-то дверные ручки, рычаги стеклоочистителей, колесные колпаки и прочие детали. Оказывается даже такие мелочи вносят свой вклад в общую силу аэродинамического сопротивления движению, причем их довесок весьма существенен. Судите сами: поднятые ночью убирающиеся фары увеличивают силу сопротивления воздуха на 10%, открытые окна - на 5%, установленные предусмотрительным автовладельцем грязезащитные фартуки на всех колесах - на 3%, багажник на крыше - на 10-12%, наружные зеркала заднего вида - 5-7%, широкопрофильные шины - на 2-4%, антенна - на 2%, открытый люк в крыше - на 2-5%. С другой стороны есть ряд деталей, применение которых позволяет уменьшить аэродинамическое сопротивление. Так, установка на колеса гладких колпаков снижает его на 3%, замена выступающих дверных ручек на оптимизированные в аэродинамическом смысле - утопленные также несколько снижает силу сопротивления воздуха. Чтобы исключить добавочное сопротивление, вызываемое щетками стеклоочистителей, когда последние находятся в нерабочем положении, конструкторы некоторых фирм прячут их в специальный отсек, расположенный между кромкой капота и лобовым стеклом. Также существенную роль играет качество сборки кузова автомобиля: малые зазоры в местах стыков кузовных деталей могут уменьшить сопротивление на 2-5%.

Внутреннее сопротивление обусловлено движением воздушных потоков через системы вентиляции и охлаждения. Обычно пути движения воздушных потоков в этом случае имеют достаточно сложную конфигурацию, обладающую множеством местных сопротивлений. К числу последних относятся резкие изменения направления движения воздуха, фильтры, радиаторы и т. п.

Для количественной характеристики аэродинамического сопротивления используют следующую зависимость:

FX =CX *P*V2 *FMID /2,

где: Р - плотность воздуха;
V - скорость относительного движения воздуха и машины;
FMID - площадь наибольшего поперечного сечения автомобиля (лобовая площадь);
CX - коэффициент лобового сопротивления воздуха (коэффициент обтекаемости).

Обратите внимание на то, что скорость в формуле стоит в квадрате, а это значит: при увеличении скорости движения транспортного средства в два раза, сила сопротивления воздуха увеличивается в четыре раза, а затраты мощности вырастают в восемь раз!!! Поэтому при движении автомобиля в городском потоке аэродинамическое сопротивление автомобиля мало, на трассе же его значение достигает больших величин. А что говорить о гоночных болидах, движущихся со скоростями 300 км/час. В таких условиях практически вся вырабатываемая двигателем мощность тратиться на преодоление сопротивления воздуха. Причем за каждый лишний км/ч прироста максимальной скорости автомобиля приходится платить существенным увеличением его мощности или снижением CX . Так, например, работая над увеличением скоростных возможностей болидов, участвующих в кольцевых гонках Nascar , инженеры выяснили, что для увеличения максимальной скорости на 8 км/ч потребуется прирост мощности двигателя в 62 кВт! Или уменьшение СX на 15%.


Copyright © MirZnanii.com 2015-2018. All rigths reserved.