Смекни!
smekni.com

Проектирование и расчет конического редуктора (стр. 3 из 5)

Для опор вала конической шестерни также используют конические роликовые подшипники. При очень высокой частою вращения вала-шестерни применя­ют подшипники шариковые радиально-упорные. Первоначально принимаем подшипники радиально-упорные средней серии.

3.4.2. Выбор схемы установки подшипников.

В большинстве случаев валы должны быть зафиксированы от осевых смещений. По способности фиксировать осевое положение вала опоры разделяют на фиксирующие и пла­вающие. В фиксирующих опорах ограничивается осевое перемещение вала в одном или обоих направлениях. В плава­ющих опорах осевое перемещение вала в любом направлении не ограничивается. Фиксирующая опора воспринимает ради­альную и осевую нагрузки, а плавающая опора—только радиальную.

Подшипники качения выпускают следующих классов точности (в порядке ее повышения): 0, 6, 5, 4 и 2. Обычно применяют подшипники класса точности 0. Подшипники более высоких классов точности применяют для опор валов, требующих повышенной точности вращения или работающих при особо высоких скоростях вращения. С повышением класса точности подшипника стоимость его заметно возрастает.

В большинстве случаев валы должны быть зафиксированы от осевых смещений. По способности фиксировать осевое положение вала опоры разделяют на фиксирующие и пла­вающие. В фиксирующих опорах ограничивается осевое перемещение вала в одном или обоих направлениях. В плава­ющих опорах осевое перемещение вала в любом направлении не ограничивается. Фиксирующая опора воспринимает ради­альную и осевую нагрузки, а плавающая опора—только радиальную.

В некоторых конструкциях применяют так называемые «плавающие» валы. Эти валы имеют возможность осевого смешения в обоих направлениях и устанавливаются на плавающих опорах.

Осевую фиксацию широко применяют в короб­ках передач, редукторах и в других узлах для валов цилиндрических зубчатых передач, а также для приводных валов ленточных транспортеров, цепных конвейеров.

Подшипники обеих опор должны быть нагружены по возможности равномерно. Поэтому если опоры нагружены кроме радиальной еще и осевой силой, то для более равномерного нагружения подшипников в качестве плаваю­щей выбирают опору, нагруженную большей радиальной нагрузкой.

При температурных колебаниях плавающий подшипник перемещается в осевом направлении на величину удлинения (укорочения) вала. Так как это перемещение может происхо­дить под нагрузкой, поверхность отверстия корпуса изнаши­вается. Поэтому при действии на опоры вала только радиальных нагрузок в качестве плавающей выбирают менее нагруженную опору.

Осевую фиксацию валов применяют в цилин­дрических передачах.

Принимаем фиксирующие опоры.

3.5. Составление компоновочной схемы.

После определения расстояний между деталями передачи, диаметров ступеней валов, после выбора типа подшипников и схемы их установки приступают к вычерчиванию редуктора или коробки передач.

4. Конструирование шестерни и колеса

Размер ступицы определяют но соотношениям для цилиндрическихзубчатых колес.

При относительно небольших диа­метрах колеса изготовляют из прутка, при больших заготовки получают свободной ковкой с последующей токарной обра­боткой.

При любой форме колес внешние углы зубьев притупляют фаской , обрабатывая колеса по внешнему диаметрупараллельно оси посадочного отверстия. Торец зубчатого венца используют для установки заготовки при нарезании зубьев. Для уменьшения объема точной механической об­работки выполняют выточки глубиной 1...2 мм.

С целью экономии относ­ительно дорогих сталей, иду­щих на изготовление коничес­ких колес, целесообраз­но колеса выполнять состав­ными. В зависимости от размеров колеса зубчатый ве­нец крепят к стальному центру болтами, установленными без зазора (под развертку), или к фланцу вала заклепками;зубчатый венец располагаюттак, чтобы осевая сила, возникающая в зацеплении, быланаправлена на опорный фланец.

Широкое применение имеют конические колеса с круго­выми зубьями, которые нарезают резцовыми головками, закрепляя заготовку на оправке. Чтобы такое нарезание можно было осуществить, необходимо предусмотреть сво­бодный выход инструмента.

5. Расчёт шпоночных соединений.

Для передачи вращающего момента

с колеса на вал применим шпоночное соединение.
мм

Шпонка призматическая (табл. 12.5): b=25 мм, h =14 мм, t1 =9 мм. Длина шпонки l=107 мм, рабочаядлина lp= l - b =107 – 25 = 82мм. Расчетные напряжения смятия:

что меньше [s]см=140 Н/мм2 для чугунной ступицы шкива. Условие выполнено

Рассчитаем шпоночное соединение для передачи вращающего момента

с звездочки на входной вал редуктора.
мм

Шпонка призматическая (табл. 12.5): b=20 мм, h =12 мм, t1 =7,5 мм. Длина шпонки l=53 мм,рабочаядлина lp= l - b =53 – 20 = 33 мм. Расчетные напряжения смятия:

что превышает допустимое напряжение при установке стальной полумуфты [s]см=90 Н/мм2. Рекомендуется увеличить длину шпонки.

6. Расчет подшипников качения.

6.1. Определение реакций опор.

Расчетные схемы для определения реакций опор валов редуктора приведены на рисунке, Силы здесь изображены как сосредоточенные, приложенные в серединах ступиц. Линейные размеры (мм) в предположе­нии установки валов берут по компоновочной схеме.

Силы в зацеплении были опре­делены выше:

;
;

Сила

действует со стороны ременной передачи, опреде­лена из расчета передачи.

Линейные размеры, необходимые для определения реакций, берем по компоновочной схеме l1=88 мм, l2=125 мм, l3=213 мм, l4=130 мм, l5=368 мм, dм1= 100 мм, dм2= 401 мм.

Быстроходный вал

Реакция от сил в зацеплении:

в плоскости XOY

- реакции найдены правильно.

в плоскости YOZ

- реакции найдены правильно.

Суммарные реакции опор для расчета подшипников:

Тихоходный вал

Реакция от сил в зацеплении:

в плоскости YOZ

- реакции найдены правильно.

в плоскости YOZ

- реакции найдены - реакции найдены правильно.

Суммарные реакции опор для расчета подшипников:

6.2. Подбор подшипников для тихоходного вала.

Частота вращения вала n = 79,24 об/мин, требуемая долговечность

. d=85

На опоры вала действуют силы:

;
;

Предварительно принимаем подшипники роликовые ко­нические серии 7616 . Из табл. для этого подшипника выписываем: