Смекни!
smekni.com

Сущность физиологии упражнений и спорта. (стр. 1 из 4)

Сущность физиологии упражнений и спорта.

“Ничто так не истощает здоровье, как физическое бездействие” – сказал Аристотель.

Тело человека – удивительный механизм! В нем происходит бесконечное множество отлично координированных явлений. Они обеспечивают непрерывное осуществление сложных функций, таких, как зрение, дыхание, слух, обработка информации, без вашего сознательного усилия.

Если вы встанете, выйдете на улицу и начнете бегать трусцой вокруг жилого массива, в действие придут почти все системы вашего организма, позволяя легко перейти от состояния покоя к состоянию физической нагрузки. Если вы будете ежедневно заниматься, таким образом, и постепенно увеличивать продолжительность и интенсивность бега трусцой, ваш организм адаптируется и ваша работа станет более эффективной.

В течение столетий ученые изучали, как работает организм человека, как меняются функции или физиология организма во время занятий физической деятельностью и спортом.

В основе физиологии упражнений и спорта лежат анатомия и физиология. Анатомия изучает структуру и форму, или морфологию, организма. Она дает представление о строении различных частей тела и их взаимодействии. Физиология изучает функции организма: как работают системы органов, тканей, клеток, а также как интегрируются их функции с тем, чтобы регулировать среду организма. Поскольку физиология характеризует функции структур, нецелесообразно начинать ее изучение, не имея представления об анатомии. Физиология упражнений изучает изменения структур и функций организма под воздействием срочных и долговременных физических нагрузок. Спортивная физиология применяет концепции физиологии упражнений в процессе подготовки спортсменов, а также для улучшения их спортивной деятельности таким образом, спортивная физиология является производной физиологии упражнений.

Физиология упражнений развилась на базе материнской дисциплины – физиологии. Она изучает физиологическую адаптацию организма к стрессу срочной нагрузки при выполнении упражнения или занятий физической деятельностью и хроническому стрессу долговременной нагрузки при физической тренировке. Спортивная физиология выделилась из физиологии упражнений. Она использует данные физиологии упражнений для решения проблем спорта.

Рассмотрим пример, который поможет нам отличить друг от друга эти две тесно связанные отрасли физиологии. Благодаря исследованиям в области физиологии есть четкое представление о том, как наш организм получает энергию из продуктов питания, необходимую нашим мышцам, чтобы начать и поддерживать движение. Известно, что во время отдыха или при выполнении упражнения небольшой интенсивности главным источником энергии являются жиры и по мере увеличения интенсивности упражнения наш организм все больше использует углеводы до тех пор, пока они не становятся главным источником энергии. При продолжительной нагрузке высокой интенсивности запасы углеводов в нашем организме значительно сокращаются, что приводит к их истощению. Используя эту информацию и понимая, что наш организм имеет ограниченные запасы углеводов для производства энергии, спортивная физиология отыскивает пути:

- Увеличить способность организма накапливать углеводы (углеводная нагрузка).- Снизить интенсивность использования организмом углеводов во время мышечной деятельности (экономия углеводов);- Усовершенствовать рацион питания спортсменов до соревнований и во время соревнований и свести к минимуму риск истощения запасов углеводов.

Физиология спортивного питания, являющаяся подразделом спортивной физиологии, в настоящее время быстро развивается.

Исторический материал.

Может показаться, что современные ученые, работающие в области физиологии упражнений, формулируют новые идеи, никогда прежде не применявшиеся в "окостенелой" науке. Это не так. Информация, собранная по крупицам, позволила разрешить проблему мышечного движения. Довольно часто идеи и теории современных исследователей в области физиологии формировались на основании гипотез ученых, чьи имена давно забыты.
То, что считается оригинальным или новым, довольно часто оказывается ассимиляцией предыдущих открытий или использованием данных других наук для решения проблем физиологии упражнений. Чтобы помочь разобраться в этом, рассмотрим кратко историю развития физиологии упражнений и вспомним тех людей, которые ее создавали.

Начала анатомии и физиологии

Хотя начало исследованиям функций человеческого тела положили древние греки, только к 1500 году был сделан действительно значительный вклад в понимание, как структуры, так и функций организма человека.

Предшественницей физиологии была анатомия. Работа Андреаса Безалия – "Структура человеческого тела", опубликованная в 1543 году, явилась поворотным пунктом в развитии науки о человеке и изменила направление последующих исследований. Хотя главное внимание в ней было обращено на анатомическое описание различных органов, предпринимались также попытки объяснить их функции.

Британский историк Майкл Фостер заметил: "Эта книга положила начало не только современной анатомии, но и современной физиологии. Она навсегда положила конец представлениям, царившим в течение 14 столетий, и способствовала действительному возрождению медицины".

Большинство ранних попыток объяснить физиологические аспекты были либо неверными, либо настолько туманными, что их можно было рассматривать лишь как предположения.

Например, попытки объяснить, как мышцы производят силу, сводились, как правило, к описанию изменений их размеров и формы во время сокращения, поскольку наблюдения ограничивались лишь тем, что можно было видеть невооруженным глазом. На основании подобных наблюдений Херо-нимус Фабрициус (около 1574 г.) выдвинул предположение, что сократительная мощность мышцы находится в ее волокнистых сухожилиях, а не в "мясистой части".

Анатомам не удавалось обнаружить существование индивидуальных мышечных волокон до тех пор, пока голландский ученый Антони ван Левенгук не изобрел микроскоп (около 1660 г.). Однако то, как эти волокна сокращаются и производят силу, оставалось загадкой до середины нашего столетия, когда появилась возможность изучать сложнейшую деятельность мышечных белков с помощью электронного микроскопа.

Появление физиологии упражнений.

Физиология упражнений относительный новичок в мире науки. До конца XIX столетия главная цель физиологов заключалась в получении информации, имеющей клиническое значение. Проблема реакции организма на физические нагрузки практически не изучалась.

Несмотря на общепризнанную значимость регулярной мышечной деятельности уже в середине XIX столетия, до конца столетия на физиологию мышечной деятельности внимание почти не обращали.

Первая работа по физиологии упражнений – "Физиология физического упражнения", была написана в 1889 году Фернандом Ла Гранжем. Принимая во внимание небольшое количество исследований в области физических нагрузок в то время, было весьма интересно познакомиться с тем, как автор освещает такие темы, как "Мышечная работа", "Усталость", "Привыкание к работе", "Функция мозга при нагрузке".

Эта ранняя попытка объяснить реакции организма на физические нагрузки была во многом ограничена весьма противоречивыми теоретическими аспектами и незначительным количеством фактического материала.

Несмотря на появление в то время некоторых основных понятий биохимии физических нагрузок, Ла Гранж, тем не менее, отмечал, что многие детали этой проблемы все еще находятся в стадии становления и изучения. Например, он писал, что: "...понятие "энергетический метаболизм" стало весьма сложным в последнее время; мы можем сказать, что оно в определенной степени запутано и, довольно трудно в двух словах дать ему четкую и ясную характеристику. Оно представляет собой раздел физиологии, который в настоящее время пересматривается, поэтому в данный момент мы не можем сформулировать свои выводы".

Первым опубликованным учебником по физиологии физических нагрузок была работа

Ф. Ла Гранжа "Физиология физической нагрузки " (1889 г.)

В конце 1800 г. появилось множество теорий, объясняющих источник энергии, обеспечивающей мышечное сокращение. Как известно, во время физической нагрузки мышцы производят много тепла, поэтому, согласно некоторым теориям, это тепло используется косвенно или непосредственно, чтобы заставить сокращаться мышечные волокна.

В следующем столетии Уолтер Флетчер и Фредерик Гоуленд Хопкинс установили тесную взаимосвязь между мышечным сокращением и образованием лактата. Стало ясно, что энергия для выполнения мышечного сокращения образуется вследствие распада мышечного гликогена с образованием молочной кислоты, хотя детали этой реакции оставались невыясненными. Поскольку для мышечного сокращения требуется достаточно много энергии, мышечная ткань послужила идеальной моделью для раскрытия тайн клеточного метаболизма. В 1921 г. Арчибальд (А.В.) Хилл получил Нобелевскую премию за исследования энергетического метаболизма.

В тот период времени биохимия находилась в колыбели своего развития, однако она быстро завоевывала признание благодаря усилиям таких ученых – лауреатов Нобелевской премии, – как Альберт Сенф-Дьёрди, Отто Мейергоф, Август Крог и Ханс Кребс, активно изучавших проблему выработки энергии живыми клетками.

Большинство своих исследований Хилл провел на изолированных мышцах лягушки, однако он был одним из первых, кто провел физиологические исследования на человеке. Эти исследования стали возможны благодаря технической помощи Джона Холдена, разработавшего метод и прибор для измерения потребления кислорода во время физической нагрузки.