регистрация / вход

Изотопы и радиометрия объектов ветеринарного надзора

Санкт-Петербургская Академия Ветеринарной Медицины Реферат на тему: "Изотопы и радиометрия объектов ветеринарного надзора" Содержание:

Санкт-Петербургская Академия Ветеринарной Медицины

Реферат на тему:

"Изотопы и радиометрия объектов ветеринарного надзора"


Содержание:

Источники природной радиоактивности 3

Источники искусственной радиоактивности 3

Почва как исходное звено миграции радионуклидов в природной среде 4

Метаболизм радионуклидов в организме сельскохозяйственных животных 6

Поступление радионуклидов в продукцию животноводства 7

Использование радионуклидов и ионизирующих излучений в животноводстве и ветеринарии 7

Радиометрия объектов ветеринарного надзора 9

Список литературы 11

Источники природной радиоактивности

Природная радиоактивность обусловлена радиоактивными изотопами естественного происхождения, присутствующими во всех оболочках земли — литосфере, гидросфере, атмосфере и биосфере. Сохранившиеся на нашей планете радиоактивные элементы условно могут быть разделены на три группы.

1. Радиоактивные изотопы, входящие в состав радиоактивных семейств, родоначальниками которых являются уран (U238 ), торий (Th232 ) и актиний–уран (AcU235 ).

2. Генетически не связанные с ними радиоактивные элементы: калий (К40 ), кальций (Ca48 ), рубидий (Rb87 ) и др.

3. Радиоактивные изотопы, непрерывно возникающие на земле в результате ядерных реакций, под воздействием космических лучей. Наиболее важные из них — углерод (С14 ) и тритий (Н3 ).

Естественные радиоактивные вещества широко распространены во внешней среде. Это в основном долгоживущие изотопы с периодом полураспада 108 –1016 лет. В процессе распада они испускают a- и b-частицы, а также g-лучи.

Главным источником поступающих во внешнюю среду естественных радиоактивных веществ, к настоящему времени широко распространенных во всех оболочках земли, являются горные породы, происхождение которых неразрывно связано с включением в их состав всех радиоактивных элементов, возникших в период формирования и развития планеты. Благодаря деструктивным процессам метеорологического, гидрологического, геохимического и вулканического характера, происходящих непрерывно, радиоактивные вещества подверглись широкому рассеиванию.

Естественная радиоактивность растений и пищевых продуктов обусловлена поглощением ими радиоактивных веществ из окружающей среды. Из естественных радиоактивных веществ наибольшую удельную активность в растениях составляет К40 , особенно в бобовых растениях. Многие наземные растения, особенно водоросли, обладают способностью концентрировать в своих тканях радий из почв и воды, некоторые накапливают уран. Анализы различных продуктов питания показали, что радий постоянно присутствует в хлебе, овощах, мясе, рыбе и других продуктах питания.

Сельскохозяйственные животные за свою жизнь поедают растительные корма с больших площадей. Вместе с кормом в их организм поступают радиоактивные продукты деления, которые в небольших количествах не приводят к регистрируемым поражениям организма. В животных организмах К40 обычно содержится меньше, чем в растениях. U238 , Th232 и С14 по сравнению с К40 встречаются в биологических объектах в очень незначительных концентрациях.

Источники искусственной радиоактивности

Кроме естественных радиоактивных изотопов, существующих в природной смеси элементов, известно много искусственных, полученных в результате различных ядерных реакций (облучение устойчивых химических элементов потоками нейтронов в ядерных реакторах или бомбардировка их тяжелыми частицами — протонами, a-частицами и др.) или же образующихся в результате ядерных взрывов. При ядерном взрыве образуется большое количество радиоактивных веществ как в результате процессов деления, так и при реакции синтеза легких ядер.

Из радиоактивных продуктов деления наибольшую опасность представляют Sr90 и Cs137 . Они имеют относительную высокую энергию излучения и большой период полураспада, исключительную способность включаться в биологический круговорот веществ, а также долго задерживаться в организме животных и человека.

Почва как исходное звено миграции радионуклидов
в природной среде

Почвенная оболочка биосферы — один из основных компонентов в природе, где происходит локализация искусственных радионуклидов, сбрасываемых в окружающую человека среду вследствие его техногенной деятельности.

Сорбция радионуклидов в почве имеет двоякое значение для их миграции в биосфере и, в частности, в сельскохозяйственной сфере. С одной стороны, закрепление их в верхних горизонтах почвы — в корнеобитаемом слое растений — обеспечивает существование в природе длительно действующего источника радионуклидов для корневого накопления растениями. С другой стороны, сильная сорбция твердой фазой почвой радионуклидов ограничивает их усвоение через корневые системы растений.

В различных радиологических ситуациях, связанных с введением радионуклидов в сельскохозяйственную сферу, аккумуляция радионуклидов растениями из почвы определяет исходные масштабы включения радионуклидов в пищевые цепи в системе радиоактивные выпадения–почва–сельскохозяйственные растения–сельскохозяйственные животные–человек. С этим связано важное значение звена почва–растение в общем цикле круговорота радионуклидов в наземной среде в целом и в агропромышленной сфере в частности.

Радионуклиды, как правило, находятся в почвах в ультрамикроконцентрациях. Исключение составляет небольшая группа радионуклидов с периодами полураспада порядка десятков–сотен миллионов лет и больше. Очень низкая массовая концентрация искусственных и естественных радионуклидов в почвах и почвенных растворах обусловливает существенную зависимость поведения радионуклидов в почвах от концентрации и свойств их изотопных или неизотопных носителей (стабильных изотопов данного химического элемента или химических элементов, сходных по физико-химическим свойствам с радионуклидами).

Тритий . Н3 — единственный радиоактивный изотоп водорода (Т1/2 =12,34 года). Распад Н3 сопровождается b-излучением с очень низкой энергией. В результате взаимодействия космических излучений с N, О и Ar в атмосфере образуется природный тритий. В Мировом океане находится 65 % природного Н3 , на земной поверхности и в наземной биоте — 27 %. Антропогенный тритий образуется и поступает в окружающую среду при производстве ядерной энергии. Кроме того, источником поступления Н3 в окружающую среду являются испытания ядерного и термоядерного оружия. Около 99 % количества природного трития превращается в тритированную воду — Н3 НО. Поведение Н3 в почве описывается закономерностями поведения воды и зависит от взаимодействия различных процессов ее переноса.

В виде Н3 ОН и других соединений Н3 включается практически во все реакции, присущие биогеохимическому циклу водорода, включая процессы почвообразования, образования биоорганического вещества и др.

Углерод . Основной радиоактивный изотоп углерода — С14 (b-излучатель, Т1/2 =5730 лет). Поступление С14 во внешнюю среду происходит как в результате природных явлений (космическое излучение), так и в результате антропогенных процессов (ядерные взрывы, производство ядерной энергии, сжигание ископаемого топлива, использование препаратов, меченных С14 ).

Миграция С14 в биосфере подчиняется закономерностям углеродного геохимического цикла. Благодаря круговороту углерода в природе происходит постоянный обмен С14 между атмосферой, с одной стороны, и гидросферой, литосферой, педосферой и живыми организмами, — с другой. В почвах С14 входит в состав гумусовых соединений, карбонатов, С14 О2 в почвенном воздухе и другие углеродсодержащие соединения. Общеизвестен метод определения возраста почв по содержанию С14 .

Калий . В природной среде присутствуют три основных изотопа калия: два стабильных — К39 и К41 , а также один радиоактивный — К40 . К40 является b-излучателем с Т1/2 =1,28×109 лет. При распаде К40 превращается в основном в стабильный изотоп кальция Ca40 .

К40 — один из основных (по активности) естественных радионуклидов в почвах, растениях и объектах агропромышленного производства. Учитывая это, введено специальное понятие "калийный фон", отражающее вклад К40 в суммарное содержание радионуклидов.

Уран . Природный уран состоит из 3 радиоактивных изотопов — U234 , U235 и U238 , причем два последних являются родоначальниками радиоактивных семейств. Наиболее важным в токсикологическом и радиологическом отношениях по химическим свойствам является U2381/2 =4,5×109 лет, a-излучатель).

Ведущим источником U в биосфере является земная кора. Содержание урана в почвах определяется, прежде всего, его концентрацией в материнских породах.

Торий . Природный торий состоит из 6 радиоактивных изотопов, а наиболее важный в радиологическом отношении Th232 (Т1/2=1,41×1010 лет, a-излучатель) является родоначальником радиоактивного семейства.

Источником загрязнения внешней среды Th232 является широкое применение фосфорных удобрений, где его содержание колеблется от 1,5 до 25 Бк/кг, и сжигание ископаемого органического топлива.

Радий . Природный радий имеет 4 основных радиоизотопа. Главный из них Ra2261/2 =1622 года, a-излучатель). Для Ra226 в природе характерно рассеянное состояние. Он не входит в состав отдельных минералов, а широко распространен в виде включений во многих образованиях.

Полоний . Природный Po имеет 7 радиоизотопов: 6 короткоживущих и один — Po210 с Т1/2 =138,4 суток (a-излучатель).

Свинец . Природный свинец состоит из 4 стабильных и 4 радиоактивных изотопов. Наиболее важный из радионуклидов свинца Pb210 является дочерним продуктом Rn222 ; в почве находится в равновесии с Ra226 , его Т1/2 =19,4 года, b-излучатель.

Радон . Радиологический интерес представляют два радиоизотопа Rn: прежде всего Rn222 и несколько меньше Rn220 . Rn222 — газообразный дочерний продукт Ra2261/2 =3,825 суток, a-излучатель), Rn220 — продукт распада Ra224 из семейства Th2321/2 =54,5 с, a-излучатель). Они образуются в почве из своих материнских радионуклидов, а также поступают из подстилающих пород в почву в газообразной форме. Как инертные газы Rn222 и Rn220 мало вовлекаются в круговорот их почвы, но их роль как источников внешнего облучения (компонентов естественного фона) человека и живых организмов весьма значительная.

Стронций . Природный стронций состоит из 4 стабильных изотопов с массовыми числами 84, 86, 87 и 88. В число продуктов деления входят два радиоизотопа: Sr90 , относящийся к числу самых биологически подвижных (Т1/2 =28,1 года, b-излучатель), и Sr89 , более короткоживущий радионуклид (Т1/2 =50,5 суток, b-излучатель).

Цезий . Природный цезий представлен одним стабильным изотопом Cs133 , содержание которого в земной коре равно 6,5×10-4 %. В состав продуктов деления входят два радиоизотопа — Cs137 и Cs134 , относящихся к числу биологически подвижных в сельскохозяйственных цепочках. Cs137 — один из основных дозообразующих радионуклидов среди продуктов деления (Т1/2 =30,17 года, b- и g-излучатель).

Йод . Природный йод представлен одним стабильным изотопом I127 . Среди радиоизотопов йода наиболее радиологическими значимыми являются I1291/2 =1,57×107 лет, b-излучатель) и I1311/2 =8,04 суток, b-излучатель).

Метаболизм радионуклидов в организме сельскохозяйственных животных

Поступление радионуклидов с кормом — основной источник радионуклидов для сельскохозяйственных животных, тогда как другие пути перехода радиоактивных веществ играют, как правило, незначительную роль. Попавшие в организм животных радионуклиды вступают в процессы метаболизма, включающие всасывание, передвижение по отдельным органам и тканям, депонирование и выведение. От интенсивности этих процессов зависит, в конечном счете, накопление радионуклидов в продукции животноводства.

Скорость и место всасывания радионуклидов в ЖКТ можно определить путем учета времени, в течение которого после приема содержащих радиоактивные вещества кормов или воды в крови наблюдается максимальная концентрация радионуклидов. Это время варьируется в широких пределах. Так, у жвачных F18 , Na22 , Mo99 и I131 , для которых отмечается максимальная концентрация в крови в течение 2–8 ч после потребления корма, всасываются в основном в верхней части ЖКТ (по-видимому, в рубце). У H3 , Ca45 , Sr90 , Te132 , Cs137 и W185 пики концентрации в крови регистрируются в более отдаленные сроки — спустя 12–60 ч после орального поступления, эти радионуклиды всасываются главным образом в средней части ЖКТ — в тонком кишечнике.

У свиней основным методом поступления из ЖКТ в кровь I131 является желудок, а у крупного рогатого скота, овец и коз — рубец, книжка и тонкий кишечник. При этом у жвачных животных скорость резорбции радионуклидов из ЖКТ в кровь медленнее, чем у животных с однокамерным желудком.

Интенсивность и величина всасывания радионуклидов зависят от химической формы соединения, в которое включен радионуклид, и его физико-химических свойств. В ЖКТ радионуклиды могут поступать в различных формах: в ионизированном состоянии, адсорбированных на поверхности растений аэрозолей, включенными в состав растительных и животных кормов, в составе оплавленных силикатных частиц разной растворимости.

Усвоение радионуклидов у различных сельскохозяйственных животных может варьироваться в широких пределах. Действительно, если всасывание I131 в ЖКТ взрослых жвачных составляет 100 %, то у свиней оно в 1,3–3,0 раза меньше. Напротив, Cs137 всасывается из ЖКТ свиней на 100 %, а из ЖКТ представителей жвачных — крупного рогатого скота, овец и коз соответственно в 1,3–2,0, 1,8 и 1,5 раза меньше. У кур всасывание Fe59 и Co60 выше, чем у крупного рогатого скота в 18 и 15 раз, а у свиней соответственно в 4 и 12 раз меньше, чем у кур.

Всасывание радионуклидов зависит от возраста животных, и у очень молодых особей оно может приближаться для некоторых радионуклидов к 100 %.

Радионуклиды, всосавшиеся в ЖКТ, поступают в кровь, распределяются в компонентах ее сыворотки и форменных элементов. Распределение радионуклидов в органах и тканях сельскохозяйственных животных определяется их видом, возрастом, длительностью поступления радиоактивных веществ в организм и другими факторами.

В сыворотке крови овец Na22 , K42 и Cs137 практически не связаны с ее белками и находятся в диализированном состоянии, Ca45 и Sr90 лишь частично концентрируются в белках сыворотки (29–41 %), а Y90 и Ce144 содержатся преимущественно (99 %) в белковосвязанной форме.

Радионуклиды, транспортированные кровью к органам и тканям, частично задерживаются и избирательно концентрируются в них. Концентрация в органах и тканях радионуклидов при увеличении сроков их поступления в организм возрастает. Но через определенный период времени устанавливается равновесие между поступившими в организм количествами радионуклидов и их выделением. Равновесное состояние Sr90 в мягких тканях сельскохозяйственных животных устанавливается на 5–7 сутки (КРС, овцы, козы) и на 30–90 сутки (свиньи, куры); для Cs137 оно наступает позднее: у овец через 105 суток, а у КРС через 150 суток после начала введения.

Наибольшая концентрация в щитовидной железе сельскохозяйственных животных I131 при длительном поступлении в организм наблюдается на 10–15-е сутки и у КРС составляет 150 % суточного поступления с кормом (в расчете на массу всего органа). Коэффициент накопления I131 в щитовидной железе по сравнению с другими органами примерно в 100 раз больше.

Радионуклиды, поступившие в организм, не только концентрируются в органах и тканях, но и выводятся из них через ЖКТ, почки, легкие, кожу и молочную железу. Наиболее быстро удаляются радионуклиды, депонирующиеся в мягких тканях, — Mo99 , I131 , Cs137 и др. (преимущественно почками). Напротив, остеотропные радионуклиды выводятся медленно.

Поступление радионуклидов в продукцию животноводства

Среди пищевых продуктов, с которыми радионуклиды поступают в организм человека, продукты животноводства — молоко, мясо, яйцо и др. занимают одно из ведущих мест.

Переход радионуклидов в мясо и субпродукты из рациона животных определяется физико-химическими свойствами радионуклидов, а также видовыми особенностями и возрастом животных.

После однократного орального поступления в организм лактирующих коров радионуклидов наиболее интенсивное выведение их с молоком наблюдается в течение первых двух суток. Через 12 ч после введения в 1 л молока обнаруживают 0,12 % Са45 , 0,05 % Sr90 , 0,0005 % Zr95 , 0,002 % Ru106 , 0,12 % Cs137 , 0,011 % Ва140 и 0,001 % Се144 от количества, поступившего в организм. В дальнейшем концентрация быстро увеличивается и через 24–48 ч достигает наибольшей величины.

Выделение радионуклидов с молоком у животных даже одного вида может варьировать и зависит от молочной продуктивности.

Переход Sr90 из рациона в яйцо не превышает 40 % суточного поступления радионуклида, а у низкопродуктивных кур оно может достигать 60 %. Максимальное его содержание в скорлупе (96 %), далее следует желток (3,5 %), а минимальное количество приходится на белок (0,2 %). Наибольшая концентрация радионуклидов в скорлупе, белке и желтке бывает в первые сутки после введения.

Использование радионуклидов и ионизирующих излучений в животноводстве и ветеринарии

Применение современных достижений ядерной физики в животноводстве и ветеринарии, а также в других отраслях сельского хозяйства развивается в следующих основных направлениях:

· радионуклиды применяются как индикаторы (меченые атомы) в исследовательских работах в области физиологии и биохимии животных и растений, а также в разработке методов диагностики и лечения заболевших животных;

· радионуклиды и ионизирующие излучения используются в селекционно-генетических исследованиях в области растениеводства, животноводства, микробиологии и вирусологии;

· непосредственное применение ионизирующих излучений как процесса радиационно-биологической технологии для:

1. стерилизации, консервирования, увеличения сроков хранения и обеззараживания пищевых продуктов и фуража, сырья животного происхождения, биологических и фармакологических препаратов, хирургического, шовного и перевязочного материалов, приборов, устройств и инструментария, которые не подлежат температурной и химической обработке;

2. стимуляции роста и развития животных и растений с целью повышения хозяйственно полезных качеств;

3. борьбы с вредными насекомыми и оздоровления окружающей среды;

4. стерилизации животноводческих стоков и др.

В биологии, биохимии и физиологии в качестве веществ, позволяющих проводить исследования на молекулярном уровне, широко используют радиоактивные изотопы. Они позволяют изучать перемещения тел субмикроскопически малых размеров, а также отдельных молекул, атомов, ионов среди себе подобных в организме, без нарушения его нормальной жизнедеятельности.

Радиоиндикационный метод основан на использовании химических соединений, в структуру которых включены в качестве метки радиоактивные элементы. В биологических исследованиях обычно применяют радиоактивные изотопы элементов, входящих в состав организма и участвующих в его обмене веществ — Н3 , С14 , Na24 , P32 , S35 , K42 , Ca45 , Fe59 , I125 , I131 и др. Введенные в организм радионуклиды ведут себя в биологических системах так же, как их стабильные изотопы.

Контроль за распределением и депонированием радионуклидов в различных органах может осуществляться внешней радиометрией подопытных животных или соответственно подготовленных биоматериалов (кровь, ткань органов, моча, кал и др.).

Авторадиография — метод получения фотографических изображений в результате действия на фотоэмульсию излучения радиоактивных элементов, находящихся в исследуемом объекте.

Сущность метода авторадиографии сводится к следующему:

1. предварительному введению подопытному животному того или иного количества радиоактивного изотопа;

2. взятию у него тех или иных органов и изготовление из них препаратов (гистосрезы, шлифы, мазки крови и т.д.);

3. созданию в течение определенного времени тесного контакта между изготовленным препаратом, содержащим радиоактивный элемент, и фотоэмульсией;

4. проявлению и фиксации фотоматериала, как это делается в обычной фотографии.

Нейтронно-активационный анализ является высокочувствительным методом определения ультрамикроколичеств стабильных изотопов в различных биологических материалах (кровь, лимфа, ткани различных органов). Он заключается в том, что исследуемый материал подвергается воздействию в условиях ядерного реактора потока нейтронов. В результате этого образуются радиоактивные продукты, которые затем подвергаются радиохимическому анализу и радиометрии.

Радиоиммунологический метод анализа (РИА) позволяет быстро и надежно определять содержание белков в биологических жидкостях и тканевых экстрактах, а также лекарственных препаратов и различных органических соединений.

В радиоиммунологическом анализе сочетается специфичность, свойственная реакциям антиген–антитело, с чувствительностью и простотой, что дает применение радиоактивной метки. Для проведения РИА необходимо иметь соответствующие антисыворотки и меченые радиоактивной меткой антигены.

Функцию метки антигенов выполняет радиоактивный изотоп — обычно I125 или Н3 . Эта метка используется затем для обнаружения присутствия связанного комплекса.

При проведении радиоиммунологического анализа гормонов и других биологически важных соединений используют готовые стандартные коммерческие наборы реагентов, выпускаемые многими фирмами.

Использование радиоактивных изотопов и ионизирующих излучений для диагностики болезней и лечения животных

Радионуклиды и ионизирующее излучение для диагностических и лечебных целей успешно и широко применяется в медицине. В ветеринарии эти способы пока еще мало доступны для практического использования.

А.Д. Белов (1968) создал глазной аппликатор и разработал методику его применения при заболевании глаз у животных. С помощью аппликатора, заряженного Р32 и Sr89 , были получены положительные результаты при язвенных и инфекционных конъюнктивокератитах, васкуляризации роговицы у телят и собак.

Радиоактивные изотопы, используемые для диагностики, должны отвечать ряду требований: иметь малый период полураспада и малую радиотоксичность, возможность для регистрации их излучений, характерные биологические свойства (органотропность) при исследовании различных систем и органов. Так, для определения интенсивности формирования костной мозоли и выявления очагов пониженной минерализации при различных патологических состояниях используют Ga67 , который участвует в минеральном обмене костной ткани; Sr85 и Sr87 — для диагностики первичных и вторичных опухолей скелета, остеомиелита.

Радиоизотопные методы можно использовать для определения скорости кровотока, объема циркулирующей крови, плазмы и эритроцитов. Они позволяют определить минутный объем сердца, объем крови, циркулирующей в сосудах легких, тканевого и коронарного кровотока.

С помощью радиоактивных газов определяют функциональное состояние всех компонентов внешнего дыхания — вентиляции, диффузии в легочном кровотоке.

Изотопный метод оказался единственно эффективным при исследованиях водного обмена в норме, нарушений обмена веществ, а также инфекционной и неинфекционной патологии, сопровождающейся отеками и другими изменениями.

Широкое применение в клинической практике получило сканирование исследуемых органов — селезенки, печени, почек, поджелудочной железы и т.д. При помощи этого метода можно получить "карту" распределения радиоактивного изотопа в исследуемом органе и судить о функциональном состоянии последнего.

Лечебное применение радиоизотопов основано на их биологическом действии. Поскольку наиболее радиопоражаемы молодые, энергично размножающиеся клетки, то радиотерапия оказалась эффективна при злокачественных новообразованиях.

Радиометрия объектов ветеринарного надзора

В связи с развитием атомной индустрии и широким использованием атомной энергии в народном хозяйстве появились потенциальные источники загрязнения искусственными радионуклидами окружающей среды, особенно за счет выбросов радиоактивных продуктов, перерабатывающими атомными предприятиями, атомными электростанциями и аварийными ситуациями на них. В целях профилактики повышения естественных фоновых величин радиоактивности систематически проводится контроль уровней радиации окружающей внешней среды. В объектах ветеринарного надзора (фураж, водоемы, рыба, мясо, молоко, яйца и т.д.) эту работу выполняет ветеринарная радиологическая служба.

Задачей радиометрической и радиохимической экспертизы являются:

- контроль радиационного состояния внешней среды как за счет естественных, так и искусственных радионуклидов;

- определение уровней радиационного фона в различных районах территории и выяснение их влияния на биологические объекты и биоценозы;

- предупреждение пищевого и технического использования продуктов животноводства, содержащих радионуклиды в недопустимых концентрациях.

Определение радиоактивности в объектах ветеринарного надзора включает отбор и подготовку проб к радиометрии и радиохимическому анализу. Как в обычных условиях, так и при аварийных ситуациях для отбора проб определяют контрольные пункты, более полно отражающие характеристику данного района, с тем, чтобы взятые пробы были наиболее типичными для исследуемого объекта.

На исследование рекомендуется брать среднюю пробу. Для этого каждый объект берут в нескольких равных повторностях (не менее трех).

Пробы нумеруют и составляют опись, которую прилагают к сопроводительной в лабораторию. На взятые пробы составляют акт в двух экземплярах, в котором указывают: кем взяты пробы (учреждение, должность, фамилия); место и дату отбора проб; название продукта; куда направляют пробы, цель исследования. Один экземпляр оставляют в хозяйстве для списания взятых проб.

Присланный материал перед взятием средней пробы тщательно перемешивают. Величина средней пробы должна быть достаточной для надежного определения того или иного радионуклида. В целях концентрации пробы проводят минерализацию. Используемые при этом методы могут быть различными в зависимости от вида исследуемого материала, химической природы определяемых радионуклидов, схемы радиохимического анализа.

Вначале определяют суммарную b-активность, которая отражает удельную радиоактивность (Ки/кг, Ки/л) объекта ветнадзора. Это позволяет оперативно получить ориентировочные сведения о радиоактивности исследуемой пробы. Для выяснения изотопного состава радионуклидов в кормах и других объектах осуществляют радиохимический анализ.

В практике ветеринарно-радиологических исследований в первую очередь проводят радиохимический анализ главных РПД

Список литературы

1. Белов А.Д., Киришин В.А. "Ветеринарная радиобиология". М.: Агропромиздат, 1987

2. Белов А.Д., Косенко А.С., Пак В.В. "Радиационная экспертиза объектов ветеринарного надзора". М.: Колос, 1995

3. "Инструктивно-методические указания по определению радиоактивности в объектах ветнадзора". М.: Колос, 1975

4. "Изотопы и радиация в сельском хозяйстве". Т. 1 и 2. М.: Агропромиздат, 1989

5. Коваленко Л.И. "Радиометрический ветеринарно-санитарный контроль кормов, животных и продуктов животноводства". Киев: Урожай,1987

6. "Сельскохозяйственная радиоэкология". М.: Экология, 1992

ОТКРЫТЬ САМ ДОКУМЕНТ В НОВОМ ОКНЕ

ДОБАВИТЬ КОММЕНТАРИЙ [можно без регистрации]

Ваше имя:

Комментарий

Все материалы в разделе "Ветеринария"