Смекни!
smekni.com

Направленное бурение (стр. 10 из 11)

Одним из путей повышения безаварийности ОНД может служить обеспечение двойной линейной кинематической связи через ротор и через статор, что позволяет при поломке ротора извлечь весь отклонитель через статорную связь без проведения специальных работ.

Кроме того, поломки роторной части вследствие заклинивания, разрушения или прижога долота можно предотвратить, если ввести в состав снаряда специальное предохранительное устройство, ограничивающее возрастание забойного крутящего момента сил [2].

Авария и осложнения, возникающие после искусственного искривления – это обычно обрывы БТ и желобообразование в неустойчивых породах. Ликвидация обрывов в искривленных скважинах – дело сложное и трудоемкое. Причинами аварий и осложнений являются наличие интервалов с резкими изгибами трассы скважины; разнонаправленность искусственных искривлений; плохое состояние , обусловленное либо износом, либо низким качеством; приуроченность искривлений к интервалам неустойчивых, трещиноватых пород; разворот клина вследствие непрочного закрепления.

Одной из основных причин повышения аварийности при бурении дополнительных стволов является их высокая искривленность.

При анализе аварийности бурильных труб в искривленной скважине следует учитывать, что даже в прямолинейном стволе изгиб колонны в сжатой ее части может достигать значительной кривизны, которую можно определить по формуле [2]:

i =

, (23)

где i – интенсивность искривления при изгибе труб, ˚/м; f – радиальный зазор между наружной поверхностью трубы и стенкой скважины, м; l – длина полуволны в сжатой части колонны, м.

По расчетам Б. И. Воздвиженского, длина полуволны бурильных труб диаметром 50 мм может уменьшаться до 2,3 – 2,5 м при частоте вращения 600 об/мин. При диаметре скважины 76 мм интенсивность изгиба при этом будет достигать 1,05 ˚/м; при 80 мм – 1,2 ˚/м [2].

Сотрудниками ЗабНИИ проводились исследования аварийности при направленном бурении в Заречной ГРП с внедрением отклонителей СНБ-КО и ТЗ-3. За показатель аварийности n было принято число обрывов бурильных труб на 100 м бурения. При анализе большого объема буровых работ было установлено, что в обычном бурении n = 2. При анализе аварийности бурильных труб в направленном бурении, который был выполнен по 19 скважинам с 77 циклами искривлений отклонителями СНБ-КО и ТЗ-3, получены средние показатели аварийности соответственно 5,1 и 2,3 [2].

Коэффициент увеличения аварийности К, показывающий, во сколько раз при искривлении увеличивается число обрывов по сравнению с обычными скважинами, составил 2,5 для клина СНБ-КО и 1,1 для отклонителя ТЗ-3. В табл. 10 приведены показатели аварийности, среди которых наибольший интерес представляют материалы по скв. 234 и 557, где отклонителями СНБ-КО и ТЗ-3 выполнен почти равный набор кривизны с одинаковой общей интенсивностью, но наблюдалось разное число обрывов: в скв. 234 при работе СНБ-КО – девять, ТЗ-3 – один; в скв. 557 соответственно 8 и 2 [2].

Таблица 10

Показатели аварийности при бурении в Заречной ГРП

№ скв. Откл-ль Общее искр-ие, град Интенсивность искривления, град/м Число циклов искр-ия Число обрывов на искривленных участках Показатель авар-ти, n
450276232524246603233233234234557557100 СКБ-КО»»»»»»ТЗ-3СКБ-КОТЗ-3СКБ-КОТЗ-3» 23,138,831,220,127,734,79,33,814,014,214,412,48,3 1,801,202,001,452,262,591,900,600,861,031,111,120,80 4854392143332 61911319519182– 4,37,09,02,20,96,41,71,513,54,010,01,32,0

В табл. 11 приведены некоторые материалы по аварийности бурильных труб; полученные при бурении многоствольных скважин в Алексеевской ГРП Читинского ПГО, где для ответвления применялся комплекс СКО и для набора кривизны дополнительных стволов – отклонители ТЗ-3 [2].

Анализ данных табл. 11 показывает, что при бурении дополнительных стволов с общей интенсивностью искривления от 0,27 до 1,5 ˚/м заметного увеличения аварийности бурильных труб не наблюдается [2].


Таблица 11

Данные по аварийности БТ в Алексеевской ГРП

№ скв. Длина доп. ствола, м Средняя интен-ть искр-ия, ˚/м Длина скв., мм Показатель аварийности n Коэффициент увеличения аварийности K
осн. ствол доп. ствол осн. ствол доп. ствол
174176181181182182197199227 189,6202,6152,3204,4236,0184,0139,289,0154,7 0,550,650,120,140,280,270,180,171,05 627776,5767676767676 767676595959767659 7,713,29,49,73,53,75,85,63,4 11,615,83,12,73,73,76,06,03,4 1,51,20,332,01,01,01,031,071,0

В Гагаринской ГРП были изучены материалы по аварийности бурильных труб в 12 скважинах, где проводились искусственные искривления отклонителями ТЗ-3 (20 циклов) и СНБ-КО (10 циклов). На рис. 37 показана зависимость аварийности от общего набора кривизны по скважине при работе отклонителей СНБ-КО и ТЗ-3. В скважинах, где применялся отклонитель СНБ-КО (пунктирная линия), аварийность в 5 – 6 раз больше, чем при использовании отклонителя ТЗ-3 (сплошная линия) [2].

Рис. 37. Зависимость характера аварийности бурильных труб полного угла искривления δ при работе отклонителями ТЗ-3 и СНБ-КО.

Полученные результаты подтверждают преимущество плавного искривления, обеспечиваемого отклонителями непрерывного действия по сравнению с неравномерной кривой, получаемой при работе клиновыми отклонителями.

Кроме того, в Гагаринской ГРП исследовали связь между аварийностью и интенсивностью искусственного искривления отклонителями ТЗ-3. При этом были проанализированы материалы по направленному бурению 28 скважин, где было произведено более 100 циклов искривлений с различной интенсивностью локального искривления от 0,5 до 2,0 ˚/м и более. Обработку материалов производили на ЭВМ «Наири-2» по программе полиномиальной регрессии, разработанной партией «АСУ – Читагеология». При этом были получены следующие зависимости [2]:

n = – 1,28 + 4,67 ∙ i – 2;05 ∙ i2 – 4,56 ∙ i3 + 4,63 ∙ i4 – 1,08 ∙ i5; (24)

n = 1,86 – 0,92 ∙ δ – 0,14 ∙ δ2 – 0,17 ∙ δ3 + 0,001 ∙ δ5. (25)

На рис. 38 и 39 показаны зависимости аварийности от различных значений δ и i, которые показывают возможность появ­ления обрывов при δ > 3,3° и i > l,5 ˚/м [2].

Рис. 38. Зависимость аварийности бурильных труб от величины пол­ного угла δ

Рис. 39. Зависимость аварийности бурильных труб от интенсивности искривления i

Полученные результаты представляют практический интерес, однако для выбора оптимальных параметров кривизны необхо­дим учет и других факторов.

Исходя из анализа ряда причин могут быть рекомендованы следующие пути снижения аварийности при направленном бурении:

а) изучение геологического разреза, кавернометрии скважин, состояния кернового материала с целью выбора рациональных интервалов, сложенных наиболее устойчивыми в данном комплексе породами;

б) применение современных способов искусственного искривления, обеспечивающих плавное изменение трассы скважины;

в) проектирование параметров трассы скважины с учетом оптимальной кривизны;

г) повышение качества ориентирования отклонителей для снижения и исключения разнонаправленности плоскостей искривления;

д) направленное бурение вертикально-наклонных скважин в неустойчивых интервалах пород вместо наклонных для снижения желобообразования;

е) применение гладкоствольной бурильной колонны при желобообразовании;

ж) проработка интервалов интенсивного искусственного искривления специальными жесткими компоновками для устранения желобов;

з) увеличение гибкости бурильной колонны в интервалах искривления комбинированием диаметров бурильных труб и включением буровых шарниров в замковые соединения;

и) совершенствование конструкции соединений бурильных труб;

к) применение смазывающих веществ, снижающих трение и усилие на вращение колонны.

Перечисленные рекомендации не исчерпывают всех возмож­ных мероприятий по снижению аварийности при направленном бурении. Их использование, разработка и реализация новых приемов позволят снизить непроизводительные затраты и повысить общую экономичность методов направленного бурения.

Заключение

Развитии е техники и технологии направленного бурения является одним из эффективных путей повышения качества и экономичности буровых работ. Несмотря на имеющиеся достижения в разработке новых технических средств при внедрении методов направленного бурения, пока еще не везде в полной мере используют благоприятные геолого-методические предпосылки для совершенствования методики поисков и разведки на основе направленного бурения, еще недостаточно высок общий технологический уровень выполнения работ.

Анализ современного состояния проблемы направленного бурения и изучение основных тенденций развития технического прогресса позволяет считать перспективными следующие пути повышения эффективности методов направленного бурения.

1. Более широкое использование возможностей направленного бурения для совершенствования методики разведки.