Смекни!
smekni.com

Особенности термического режима рек (стр. 1 из 18)

Введение

Состояние водных объектов описывается совокупностью различных характеристик. В их число входят: уровень, расход, мутность, минерализация, биомасса, температура воды и другие характеристики в данный момент времени. Закономерно повторяющиеся изменения этих характеристик определяют гидрологический режим водного объекта. Одной из важных характеристик состояния и режима водного объекта является температура воды, которая определяет тепловое состояние и термический режим водных объектов. Термический режим рек – это закономерные повторяющиеся изменения теплового состояния водотоков. Изучение теплового состояния и термического режима имеет большое значение для решения ряда научных и практических задач.

Целью дипломной работы является изучение закономерностей изменчивости температуры воды по глубине, ширине и длине рек, оценка эффективности теоретических соотношений в отношении воспроизводства фактических распределений температуры воды. Для ее достижения были поставлены несколько задач:

1) Вывод уравнения для аналитического описания эпюры температуры воды;

2) Изучение неоднородности температуры воды по глубине рек;

3) Анализ распределения температуры воды по ширине рек;

4) Изучение закономерностей изменения теплового состояния водной массы по длине рек;

5) Оценка эффективности использования уравнения теплового баланса реки для расчета продольного изменения температуры воды в реках;

Для решения поставленных задач использованы данные наблюдений автора за температурой воды р. Оки у д. Трегубово. Также были использованы материалы специальных наблюдений автора на р. Протва в районе устья Исьмы в июле 2008 года. Кроме того были использованы опубликованные данные наблюдений за вертикальным распределением температуры воды на устьевом участке р. Нева.

Для изучения продольной изменчивости температуры воды были использованы данные экспедиции Института истории естествознания и техники РАН о температуре воды р. Сухона на участке от с. Шуйское до г. Великий Устюг, а также метеорологические данные с сайта www.rp5.ru.

Работа состоит из 6 глав. Первые три главы – общие, посвящены масштабам пространственной и временной изменчивости температуры воды и целесообразности их сочетаний, факторам формирования термического режима рек и механизмам воздействия этих факторов на температуру воды на участке реки. В третьей главе получены уравнения, описывающие распределение температуры воды по глубине и ширине потока. Четвертая глава посвящена анализу натурных данных о вертикальной изменчивости температуры воды, их типизации и сравнению данных измерений с теоретическими выводами. В пятой главе производится анализ данных наблюдений за распределением поверхностной температуры воды поперек потока и сравнение теоретических результатов с натурными данными. Шестая глава посвящена оценкам возможности расчета температуры воды по длине р. Сухона в зависимости от притока тепла к границе «река-атмосфера» без учета влияния грунтовых вод и теплообмена с грунтами, а также внутренних источников тепла.

Автор благодарен за помощь в получении данных А.А. Попрядухину, С.А. Смирнову, А.М. Алабяну и С.М. Осколкову. Автор очень признателен Н.Л. Фроловой за консультации и предоставление данных экспедиции ИИЕТ РАН по обследованию р. Сухоны.

1. Масштабы пространственной и временной изменчивости температуры воды

Состояние водных объектов в каждый момент времени описывается совокупностью различных характеристик (Михайлов, Добровольский, Добролюбов, 2007). В их число входит уровень, расход, мутность, минерализация, биопродуктивность, температура воды и другие характеристики. Закономерно повторяющиеся их изменения определяют гидрологический режим водного объекта. Одним из важных параметров состояния и режима водного объекта является температура воды. Она характеризует многие особенности существования водных объектов на суши.

Изменение температуры речных вод влияет и на температуру морских вод. Это особенно важно для крупных сибирских рек, регулирование стока некоторых из них привело к существенному изменению температуры речных вод и теплового стока в Карское море (Одрова, 1983). От температуры воды зависит растворимость газов, скорость многих химических реакций, жизнедеятельность организмов, что имеет большое значение для оценки процессов денудации, формирования химического состава речных вод, развития водных экосистем и изменения интенсивности самоочищения водных объектов. Режим температуры во многом определяет активность биоты: при переходе температуры воды через 100С осенью развитие водной растительности прекращается и начинается ее отмирание. Весной на малых и средних реках при нагревании воды до температур выше 100С начинается активное развитие водной растительности. В зависимости от температуры воды формируются фазы ледового режима рек, изменяется продолжительность, толщина льда, даты замерзания и вскрытия и другие особенности ледового режима рек.

Как и другие гидрофизические характеристики водных объектов, температура θ обладает пространственной изменчивостью, т.е.,


θ= θ (x, y, z), (1.1)

где х, у, z – пространственные координаты. Совокупность значений скалярной характеристики θ образует стационарное поле, которое описывается функцией (1.1).

Если использовать модель пространства Эйнштейна, то можно говорить о стационарном четырехмерном температурном поле, где четвертой переменной является время t. Это позволяет более полно характеризовать тепловые особенности водных объектов. Однако в гидрологической литературе обычно используется другой подход для характеристики изменения температуры вдоль временной оси. Для этого вводится понятие теплового состояния и термического режима. Тепловое состояние водного объекта описывается его температурным полем при t=const (в данный момент времени). Термический режим рек это закономерные изменения теплового состояния водотоков во времени (Михайлов, Добровольский, Добролюбов, 2007).

В каждый момент времени температуру воды в данной точке водного объекта можно представить соотношением

, (1.2)

где

– пульсационная компонента,
– средняя местная температура.

Период осреднения температуры воды может изменяться в широких пределах: секунда, минута, час, сутки, декада, месяц, год, несколько лет. При выборе периода осреднения руководствуются задачами исследований и техническими возможностями приборов. Так, время измерения температуры воды ртутным термометром – 5–8 минут (Карасев, Васильев, Субботина, 1991). Это связано с инерционностью прибора. При использовании более скоростных и современных приборов, период измерения температуры может быть уменьшен до секунд. Однако в этом случае велика вероятность влияния пульсаций температуры воды на погрешности определения средней температуры воды в данной точке потока. По этой причине наименьший период осреднения не должен превышать 100 сек. В этом случае можно получить значение местной осредненной температуры воды свободное от влияния турбулентных пульсаций. Температура воды при таком осреднении, называется осредненной местной температурой в соответствии с уравнением.

Температура воды, учитывающая поглощение солнечной радиации и пульсационные изменения, испытывает трендовые колебания (рис. 1.1). Эти колебания температуры воды являются частью термического режима водотоков. В зависимости от наличия в потоке постоянно возобновляемых вихревых возмущений, их последовательного распада на более мелкие вихри, находится отклонение температуры воды от среднего значения. Трендовая составляющая объясняется наличием суточного хода температуры воды. Оценку пульсационной составляющей можно выполнить, построив графики разности между температурой воды и ее линейным трендом. Из рисунка следует, что ее величина испытывает циклические изменения, не превышающие 0,45% от средней температуры воды.

Внутрисуточные колебания температуры определяются суточным изменением соотношения между приходными и расходными составляющими теплового баланса в период открытого русла. В зависимости от сезона величины суточных температур различны. В период ледостава суточные колебания температуры воды отсутствуют. В период открытого русла в суточном ходе температур можно выделить фазы: утреннего нагревания, дневного нагревания, вечернего охлаждения, ночного охлаждения.

В годовом ходе температуры воды в водоемах, выделяются 4 сезона (Одрова, 1979): весеннего нагревания, летнего нагревания, осеннего охлаждения, зимнего охлаждения. Принципы, заложенные в основу этой классификации, не полностью отвечают температурным водотоков. Например, выделение сезона весеннего нагревания в водоемах обусловлено наличием обратной температурной стратификации при температуре <40C в безледный период. В этот период происходит интенсивное конвекционное перемешивание, окончание которого, связанное с достижением температуры воды 40С во всей толще воды, является окончанием сезона весеннего нагревания. В реках подобной ситуации нет.

Тем не менее, эта классификация может быть применена и для рек. Каждый сезон года отличается средней величиной температуры воды и ее сезонной вариацией. Летнее нагревание – период относительно высоких и устойчивых температур. Зимнее относительно стабильное низкотемпературное состояние – период близких к 00С температур в случае ледостава или низких и устойчивых температур в его отсутствие. Для сезона весеннего нагревания характерно повышение температур от

0,20С до температуры 100С, достижение которой является условием активного развития водной растительности. В сезон осеннего охлаждения характерно понижение от 100С до
0,20С, когда вегетация растений прекращается. Изменение температуры воды от сезона к сезону определяет внутригодовую изменчивость температуры воды и зависит от климатических зональных факторов.