Смекни!
smekni.com

Газогидродинамические методы исследования (стр. 1 из 6)

КУРСОВОЙ ПРОЕКТ

"ГАЗОГИДРОДИНАМИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ ГАЗОВЫХ СКВАЖИН ПРИ СТАЦИОНАРНЫХ РЕЖИМАХ ФИЛЬТРАЦИИ НА ТАРАСОВСКОМ НГКМ"

Введение

Первые сведения о исследовании газовых скважин появились в литературе в 20-х годах нашего века. В 1925 г. была опубликована работа, в которой Баннет и Пирс описали предложенный ими метод исследования газовой скважины. В результате исследования скважины при ее фонтанировании в атмосферу устанавливали зависимости расхода газа от давления на ее устье и на забое. Этот метод исследования приводил к существенным потерям газа, не удовлетворял правилам техники безопасности и охраны окружающей среды.

В 1929 г. Пирс и Роулинс описали метод противодавлений. После усовершенствования этого метода Горное Бюро США приняло его в качестве официального метода исследования газовых скважин. В 1935 г. Роулинс и Шелхардт опубликовали результаты фундаментальных исследований большого числа газовых скважин.

Метод Роулинса и Шелхардта получил повсеместное распространение и используется до настоящего времени.

Большой вклад в развитие теории и практики исследования газовых скважин в нашей стране внесли Ю.П. Коротаев, Г.А. Зотов, Э.Б. Чекалюк, С.Н. Бузинов, К.С. Басниев, З.С. Алиев и др.

Целью выполнения данной курсовой работы является освоение теории газогидродинамических методов исследования скважин и практическое решение задач при стационарных режимах фильтрации на Тарасовском НГКМ.

Исследование скважин проводят в процессе разведки, опытной и промышленной эксплуатации с целью получения исходных данных для определения запасов газа, проектирования разработки месторождений, обустройства промысла, установления технологического режима работы скважин, обеспечивающего их эксплуатацию при оптимальных условиях без осложнений и аварий, оценки эффективности работ по интенсификации и контроля за разработкой и эксплуатацией [3].

Исследование пластов и скважин осуществляется гидродинамическими и геофизическими методами. Ряд параметров пласта определяют по кернам. При комплексном применении все эти методы взаимно дополняют друг друга. Параметры пласта, определяемые при помощи геофизических методов и данных кернов, характеризуют участок пласта, непосредственно прилегающий к стволу скважины, и дают возможность представить их послойное распределение по мощности пласта. При помощи гидродинамических методов находят, как правило, средние параметры призабойной зоны и более удаленных участков пласта.

Гидродинамические методы исследования включают изучение условий движения газа в пласте и стволе скважины.

Гидродинамические методы определения параметров пласта основаны на решении так называемых обратных задач гидрогазодинамики и подразделяются на исследования при стационарных и нестационарных режимах фильтрации.

Большое будущее принадлежит комплексным исследованиям, основанным на гидродинамических и геофизических методах, и проведению гидродинамических исследований на базе геофизической техники. Термометрические исследования наряду с изучением температурного режима скважины, призабойной зоны и пласта позволяют выяснить величины, эффективных мощностей, распределение дебитов по отдельным интервалам пласта, параметры пласта, положение контакта газ – вода и места утечек газа при нарушении герметичности колонн.

Большое значение приобретает вопрос о сопоставлении параметров пласта, определяемых с помощью геофизических и промысловых гидрогазодинамических методов, что позволяет получать более достоверные характеристики пласта, чем дает сравнение геофизических данных с керновым материалом.

К специальным видам исследования относятся, например, комплексные исследования газоконденсатных скважин, где определяются изменение соотношения между газовой и жидкой фазами и их состав при различных гидродинамических и термодинамических условиях при помощи передвижных установок, предусматривающих подогрев и охлаждение исследуемого газа.

Методы исследования скважин могут быть подразделены на следующие виды:

1. Испытания в условиях стационарной фильтрации газа при различных режимах работы скважины;

2. Испытания в условиях нестационарной фильтрации газа, которые в свою очередь состоят из обработки:

а) кривых восстановления давления во время остановки скважины;

б) кривых перераспределения дебита газа при постоянном давлении на забое или устье;

в) кривых перераспределения забойного давления при постоянном дебите газа.

Содержание и объем исследовательских работ зависят от назначения геолого-технических условий.

По своему назначению испытания газовых скважин подразделяются на следующие:

1. Первичные исследования проводятся на разведочных скважинах после окончания бурения. Их назначение состоит в выявлении добываемых возможностей скважины, т.е. максимально допустимого дебита, который может быть получен, исходя из геолого-технических условий, оценки параметров пласта и установлении первоначальных рабочих дебитов для опытной эксплуатации;

2. Текущие исследования применяют для установления и уточнения технологического режима работы и текущей проверки параметров призабойной зоны пласта и скважины (один раз в год или чаще, в зависимости от условий работы скважин);

3. Контрольные исследования осуществляются периодически с целью проверки качества текущих исследований, определения параметров пласта для составления проекта разработки и анализа разработки месторождения;

4. Специальные исследования проводятся перед остановкой скважины на ремонт или выходе из ремонта, перед консервацией скважины и при расконсервации, до и после работ по интенсификации притока газа. К специальным также относятся испытания газоконденсатных скважин и испытания, проводимые с целью выяснения влияния засорения призабойной зоны глинистым раствором, а также испытания по определению скопления жидкости в стволе и призабойной зоне при различных условиях работы скважины.


1. Геолого-промысловая характеристика ТНГКМ

1.1 Геологическая характеристика месторождения

Эксплуатационное разбуривание Тарасовского месторождения начато в 1986 г. На 01.07.88 г. на месторождении пробурено 197 скважин, интерпретация геофизических материалов которых позволила значительно уточнить геологическое строение верхних пластов БП7, БП8, БП9.

Залежь пласта БП7 вскрыта всеми пробуренными скважинами в интервале отметок 2320,4–2371,2 м. Толщина нефтенасыщенных коллекторов изменяется от 0,8 до 8.0 м Водо-нефтяной контакт по данным разведочных скважин проводится на средней отметке 2339 м. Высота залежи составляет 50 м, размеры 13х9 км. Залежь пластовая сводовая с многочисленными зонами замещения коллекторов глинисто-алевритистыми разностями. По данным ГИС коллекторы имеют очень низкую емкостно-фильтрационную характеристику; рд 6–11 омм, Qпс -0,4–0,6, в разрезе представлены отдельными прослоями, не выдержанными по площади.

Во многих скважинах коллекторы пласта БП7 ввиду их сильной глинизации имеют неясную характеристику насыщения. Пласт испытан только в одной скважине №59 в которой получен незначительный приток нефти дебитом 5,9 м3/сут при Ндин 1560 м исходя из этого, залежь пласта БП7 принята для разработки в качестве возвратного объекта с пластов БП8, БП9.

Залежь пласта БП8 является основным объектом разработки, вскрыта всеми пробуренными скважинами на абсолютных отметках 2374–2425.4 м. ВНК проведен по данным разведочных скважин на абсолютных отметках 2417,9–2425,4 м. Данные эксплуатационных скважин принятому положению ВНК не противоречат. При интерпретации материалов ГИС выявилась четкая закономерность распространения коллекторов на западном и восточном куполах структуры. На западе в скважинах встречаются два типа разреза: в одних пласт представлен песчаником по всему разрезу толщиной до 25,4 м с незначительными прослоями плотных и глинистых пород, в других кровле пласта развит довольно однородный песчаник различной толщины, к подошве он замещается глинисто-алевритистыми разностями. Емкостно-филътрационная характеристика этих коллекторов высокая.

На востоке, особенно в центральной части, массивные коллектора расчленяются на отдельные прослои толщиной 1–2 м, к подошве происходит полная их глинизация. Суммарные нефтенасыщенные толщины изменяются от 1,4 до 11,4 м. Размеры залежи составляют 13х9,5 км, высота ее 46 м, залежь является пластовой сводовой. В целом по пласту БП8 за счет увеличения нефтенасыщенных толщин, объем нефтесодержащих пород увеличивается примерно на 20%(без учета возможного уменьшения толщин на неразбуренной части на востоке залежи).

Нефтяная залежь БП9 отделяется от выше лежащего пласта БП8 глинистым разделом толщиной 10–15 м. Пласт вскрыт на абсолютных отметках 2402–2436 м. Залежь водонефтяная, поэтому все скважины пробуренные в пределах контура вскрыли ВНК. По результатам разведочных скважин положение его фиксируется на отметках 2431,1–2435 м. По данным эксплуатационных скважин возможен подъем ВНК на восточном склоне до 2420 м. Эффективные толщины пласта изменяются от 30,0 до 16,6, м нефтенасыщенные от 26,6 до 2,8. Пласт БП9 относительно однороден, но в средней части содержит перемычку разной толщины, достаточно выдержанную по площади, которая позволяет разделить (хотя и несколько условно) пласт на два интервала БП91, БП92. Размеры залежи 6х11 км, высота 30 м. В целом за счет расширения площади нефтеносности на юго-востоке, а также увеличения нефтенасыщенных толщин, увеличился объем нефтесодержащих пород. Но требует уточнения нефтенасыщенность коллекторов, величина которой, вероятно, ниже принятой.

По Тарасовскому месторождению по всём пластам БП7-БП142 была принята единая минерализация пластовых вод 18 г./л, удельное сопротивление которой 0,14 омм. По предварительному заключению пластовая вода более пресная и имеет большее сопротивление.