Смекни!
smekni.com

Розробка Штормового родовища (стр. 4 из 10)

q2=Q2 - (Q11 (Pвиб1 - Pвиб2));

q3=Q3 - (Q21+2 (Pвиб2 - Pвиб3)); (2.16)

qn=Qn- (Qn-11+2+3+…(n-1) (Pвиб n-1 - Pвиб n))


де qn – дебіт під’єднаного пласта; Qn – сумарний дебіт пластів; η1+2+3+…(n-1) - сумарний коефіцієнт продуктивності.

При збільшенні депресії загальне збільшення дебіту відбувається не тільки за рахунок під’єднання нового пласта, але і за рахунок збільшення дебіту уже працюючих пластів

(2.17)

де

=
(Pвиб1 - Pвиб.n)

=
(Pвиб2 - Pвиб.n)(2.18)

=
(Pвиб.n-1 - Pвиб.n)

Коефіцієнт продуктивності кожного під’єднаного пласта

(2.19)

Визначаємо коефіцієнти продуктивності кожного під’єднаного пласта і за формулою Дюпюї знайдемо їх гідропровідність

(2.20)

Неусталений режим фільтрації

Обробка даних дослідження свердловин при неусталеному режимі фільтрації базується на теорії пружності пластової системи. Закономірності кривих відновлення тиску після зупинки свердловин, виведені з основних теоретичних положень пружного режиму знайшли універсальне застосування в промислових дослідженнях свердловин.

Усі методи досліджень виходять з наступних: приймається, що перед зупинкою дебіт свердловини усталений, тиск довкола неї розподілився за стаціонарним законом, пласт характеризується постійною потужністю і однорідною проникністю; приплив однофазний.

Найбільш простий аналітичний вираз кривої відновлення вибійного тиску отримано для свердловини в необмеженому однорідному пласті зупиненої після роботи на стаціонарному режимі радіальної фільтрації при повній відсутності припливу після зупинки (формула запропонована М.Маскетом для точкового джерела в необмеженому пласті):

(2.21)

де

— біжучий дебіт свердловини перед зупинкою;
(-х) – інтегральна експоненційна функція; Т - час припливу рідини (або газу) до свердловини; t – час відновлення пластового тиску; χ – п'єзопровідність.

Приплив рідини з пласта після закриття свердловини поступово припиняється і пісдя деякого часу крива відновлення вибійного тиску наближається до кривої підвищення тиску у свердловині після її раптової зупинки.

Обробка при даному припущенні проводиться за методом Хорнера, методом дотичної.

Практика визначення параметрів пласта і свердловини показала, що не завжди за 2-3 години не вдається отримати криву відновлення тиску, тобто не встигає сформуватись прямолінійна ділянка лінії

. Крім того форма кривих відновлення тиску при наявності притоку в свердловину така, що практично завжди можна виділити прямолінійний відрізок і прийняти помилково його за асимптотичну пряму, яка відповідає фільтраційним властивостям пласта. Щоб цого уникнути, запропоновані методи для обробки кривих, які використовують початкову ділянку (метод Ю.П. Борисова, метод Чарного-Умрихіна, метод Е.Б. Чекалюка, метод детермінованих моментів).

В основу методу Хорнера взято рівняння (2.21), яке перетворене таким чином

(2.22)

В системі координат

,
рівняння (2.22)має вид прямої лінії за нахилом якої

(2.23)

визначають гідропровідність

(2.24)

При нескінчено тривалій зупинці у свердловині відновиться тиск до пластового, бо при t

величина
. В цій точці знаходиться максимальне значення депресії, а повністю відновлений пластовий тиск буде рівний

Рплв+∆Рmax


де Рв – усталений тиск на вибої перед зупинкою свердловини.

Розглянемо метод детермінованих моментів (МДМ). Детерміновані моменти являють собою інтегральні характеристики КВТ:

(2.25)

де n = 0; 1; 2.

Нульовий Мо, перший М1, другий М2 моменти визначають як інтеграл за часом t від поточної депресії тиску

з вагою t °, t 1, і t 2 відповідно.

Інтеграл (2.25) можна представити у вигляді суми двох інтегралів: від 0 до tмах і від tмах до

де tмах – повний час заміру КВТ

(2.26)

де

, А – коефіцієнт ідентифікованого рівняння першого порядку

(2.27)

При цьому похідна (

) обчислюється методом кінцевих різниць, після чого для тих самих діюх часових точок виписується система лінійних алгебраїчних рівнянь, яка розв'язується відносної А і Рпл. Таким чином, у значній мірі враховується частка детермінованих моментів, яка припадає на недовідновлену частину КВТ і зменшується викривляючий вплив від обмежності часу проведення гідродинимічних досліджень в реальних промислових умовах.

Що стосується перших інтегралів рівнянь М0, М1, то вони обчислюються методом трапецій:

(2.28)

Зокрема, перший інтеграл нульового моменту дорівнює площі фігури, розташованої між прямою

і графіком КВТ в арифметичних координатах тиск – час.

МДМ базується на аналізі діагностичного критерію

(2.29)

який за результатами аналітичних і промислових досліджень для| однорідного пласта дорівнює постійній величині 2,18 і не залежить від фільтраційних властивостей колектора, в'язкості нафти, товщини продуктивного пласта, радіусів свердловин і контурів живлення. При наявності забрудненості ПЗП параметр d>2,18 і суттєво залежить від tмах, відносних розмірів ПЗП, коефіцієнта неоднорідності, який приймається рівним зворотній величині коефіцієнта гідродинамічної досконалості Кд.

Як з’ясувалось в процесі удосконалення МДМ, аналіз одного розрахованого значення діагностичного параметра d не дає задовільних результатів через недостатньо високу точність і обмеженість часу замірів Pt і можливе перекручення КВТ, а також внаслідок неврахованого додаткового припливу флюїдів у стовбур свердловини після її припинення.

В цілому геологічні, фізичні і гідродинамічні особливості обумовлюють певний розкид значень d. Тому врешті-решт, від аналізу одного числа d перейшли до аналізу функції d(t), що значно підвищило надійність діагностики зональної неоднорідності пласта і точність розрахунку гідродинамічних параметрів.


3. Проектування методу освоєння свердловини

3.1 Характеристика та аналіз методів дії на привибійну зону пласта

В міцних слабопроникних колекторах приплив газу до свердловини дуже малий не дивлячись на велику депресію на пласт. В таких випадках застосовують вплив на привибійну зону з метою штучного збільшення проникності привибійної зони пласта і це часто дає хороші результати, тому-то найбільші втрати тиску мають місце в привибійній зоні пласта.

Збільшення проникності пласта відбувається за рахунок збільшення діаметрів порових каналів, а також за рахунок очищення порових каналів від забруднення, крім того за рахунок збільшення розмірів дренажних каналів і тому подібного.

До методів збільшення проникності пласта відносяться такі методи:

¾ Гідравлічний розрив пласта.

¾ Соляно-кислотна обробка.

¾ Термо- кислотна обробка.

¾ Гідропіскоструминна перфорація.

¾ Гідрогазопіскоструминна перфорація

¾ Торпедування свердловини.

¾ Застосування кавітаційно– пульсаційного методу.