Смекни!
smekni.com

Розробка Штормового родовища (стр. 7 из 10)

L=143 k-0,27, (3.2.17)

де L – півдовжина (одного крила) двобічної вертикальної тріщини, м;

k- проникність породи, фм2 (1фм2=10-3 мкм2).

Поверхня двох півдовжин тріщини

Sтр = 2 Lh, (3.2.18)

де L – визначається за формулою (3.2.17); h – звичайно дорівнює товщині пласта, що підлягає ГРП, м.

Питомий розподіл закріплювача (кг/м2) в тріщині можна розрахувати за емпіричними залежностями

mпс= 4+40 (m-0,09) для m <= 0,11, (3.2.19)

де m = 0,07¸0,20 – пористість породи, частки одиниці.

Масу закріплювача (піску) (т), потрібну для закріплення тріщин, розрахуємо так:

Mпс = Sтрmпс/1000. (3.2.20)

Як випливає з рівнянь (3.2.19) і (3.2.20), у міцних породах малої пористості кількість закріплювача (піску), необхідна для закріплення тріщин, значно менша, ніж у м’яких породах з великою пористістю.

Об’єм рідини для ГРП і концентація піску. Під час ГРП у свердловину послідовно нагнітають ньютонівську малов’язку рідину розриву пласта, буферну та рідину-пісконосій, що характеризується однаковими властивостями, які звичайно мають не тільки більшу в’язкість, але й часто неньютонівські властивості. Наприкінці запомповують малов’язку протискуючу рідину.

Об’єм малов’язкої рідини розриву звичайно Vр.р=20…30 м3.

Об’єм буферної рідини, яка знаходиться перед рідиною-пісконосієм, повинен забезпечити розкриття тріщин на ширину в 3…5 разів більшу, ніж діаметр закріплювача, а це 3…5 мм.

Наближено об’єм буферної рідини можна визначити так:

Vб.р.=(0,1…0,3) Vр.п., (3.2.21)

Об’єм рідини пісконосія

Vр.п.=103Мпспс, (3.2.22)

де Кпс – концентація піску в рідині-пісконосію, кг/м3.

Оптимальна концентрація піску в рідині-пісконосію залежить від швидкості падіння зернинок закріплювача u.

Залежність швидкості падіння піщинок діаметром 0,8 мм від в’язкості рідини за даними запишемо у вигляді

u= 638m-0,73, (3.2.23)

де u – швидкість падіння, м/год; m - в’язкість мПа . с.

Концентацію піску (кг/м3) визначають за формулою


Кпс =4000/u(3.2.24)

Об’єм протискуючої рідини (м3)

Vп.р.=0,785 (Hтd2в.т+(H-Hт)D2в.к), (3.2.25)

де Hт – глибина спуску НКТ з пакером, м; H – глибина залягання пласта, що підлягає ГРП, м; dв.т і Dв.к – внутрішні діаметри НКТ і експлуатаційної колони, м.


Розміри тріщини ГРП. Залежність для розрахунку півдовжини одного

крила вертикальної двосторонньої тріщини рідиною, яка фільтрується, має такий вигляд

де L – півдовжина тріщини, см; Vр.п - об’єм рідини-пісконосія, см3; qm – витрата рідини під час закріплення тріщин (qР4 , qm), см3/с; m - в’язкість рідини мПа . с; h- товщина пласта, см; m- пористість породи, частка одиниці; k- проникність породи, см2.

рб=( DРс+DР0)/2(3.2.27)

де рб – бічний гірничий тиск, Па; DРсpm-Pпл. і DР00 -Pпл .

Бічний гірничий тиск оцінюють також за формулою


де рб – теоретичний бічний гірничий тиск, МПа; n- коефіцієнт Пуассона, звичайно n=0,25; H- глибина пласта в свердловині, м; rп – густина породи, кг/м3; g=9,8 м/с2.

Вважають, що утворення тріщини можливе, якщо перепад між тиском у свердловині та пластовим тиском був більшим, ніж бічний гірничий тиск DРс> рб.

Якщо в’язкість рідини-пісконосія близька до в’язкості пластової рідини, то для одержання прийнятних розмірів тріщини у чисельник формули (3.2.26) вводимо коефіцієнт умовного збільшення в’язкості, прийнявши

m = 4m. (3.2.29)


Ширину тріщини розраховують за формулою

де n– коефіцієнт Пуасона для гірських порід (n=0,25); w - ширина тріщини, см; Е – модуль Юнга для гірських порід (Е »104 Мпа).


Кількість насосних агрегатів для ГРП визначають, виходячи з відомих Рр.г, qm, характеристики одного агрегата Ра1, qа1 і технічного стану агрегатів Ка1» 0,5…0,9:

Тривалість проведення ГРП наближено оцінюють за такою залежністю:


t=1440(Vp.p+Vб.р.+Vр.п+Vпр)/qm(3.2.32)

Технологічну ефективність ГРП з вертикальною тріщиною у вигляді кратності росту дебіту після ГРП оцінюють за І.В.Кривоносовим з умови припливу до свердловини з радіусом горизонтальної тріщини, еквівалентним частині її півдовжини L, Rтр=0,25L:

де Qгр і Q0 – відповідно дебіти після і до ГРП; Rк – радіус контура живлення, rс- радіус свердловини.

Якщо свердловина має забруднену привибійну зону, приймаємо за rс приведений радіус свердловини rс = rпр.

3.3 Розрахунок ГРП

Таблиця 3.3.1. Вихідні дані для розрахунку ГРП

Параметр Значення
Діаметр експлуатаційної колони, мм 168
Товщина стінки, мм 9
Тиск обпресування, Мпа 18
Верхні і нижні отвори перфорації, мНв.пНн.п 18401900
Товщина пласта, що підлягає ГРП,м 14
Пластовий тиск, Мпа 25,1
Пластова температура, 0С 77
Пористість порід,% 16
Середня проникність,мкм2 0,003
Поточна обводненість,% 0
Характеристика НКТМаркаЗовнішній діаметр,ммТовщина стінки,мм
Глибина спуску,м
Е896,51870
Тип насосного агрегата УН1-630х700А(4АН-700)
Максимальний робочий тиск,МПа 70
Приймальність агрегата, при Р=70 МПа, м3/добу 552,96
Приймальність агрегата, при Ро=20 МПа, м3/добу 250
Дебіт свердловини, тис. м3/добу 20

При ГРП застосовують такі рідини: рідина розриву та протискуюча рідина – водний розчин 0,2% неонолу густиною rр.р.=1000 кг/м3; буферна рідина і пісконосій – водний 0,4% розчин ПАА в’язкістю mр.п.=40 мПа с, густиною rр.п.=1000 кг/м3.

I.Розрахуєм тиск та витрату рідини під час ГРП.

1.


Визначимо середню глибину інтервалу перфорації:

2.


Розрахуємо тиск на вибої Ро під час випробування свердловини на приймальність з тиском на гирлі Рог. Оскільки для цього застосовують малов’язку рідину з невеликою витратою qo=250 м3/добу то гідравлічні витрати незначні приблизно в 89 мм НКТ.

Отже витрати приблизно дорівнюють 0,006+0,00023=0,01 Мпа/100м.


Отже тиск на вибої:


3.Знайдемо початковий коефіцієнт приймальності свердловини для відомих значень qо і Ро.

4. Розрахуємо очікуваний тиск на вибої під час ГРП при чотирикратному рості приймальності за формулою (3.2.7). Для цього спочатку розрахуємо tgb за формулою (3.2.8) значення


Очікуваний максимальний тиск під час ГРП

Ррм =1,06 . Рр4 = 1,06 . 47,034 = 49,86 МПа


5. Визначимо очікувану максимальну витрату рідини для ГРП за формулою (3.2.15), прийнявши Аq=6,7 для рідини в’язкістю mр.п = 40 мПа . с

6.Розрахуємо тиск на гирлі свердловини (на насосних агрегатах) під час нагнітання в пласт рідини розриву за рівнянням (3.2.16)


Рр.г. = Рр.m + Ргс.т. + Рвтр.


7.Гідравлічні втрати складаються з втрат у 89 міліметрових трубах і втрат у 168 міліметровій колоні. Розрахуємо їх для турболентного режиму в трубах

і в обсадній колоні:


Отже гідравлічні витрати:

Рвтр.=Рвтр.т.втр.к=8,92+0 = 8,92 Мпа

Таким чином, за формулою (3.2.16)

Рр.р.г = 49,86 – 18,34 + 8,92 = 40,44 МПа

9. Визначимо тиск під час нагнітання в пласт буферної рідини. Для цього спочатку розрахуємо гідравлічні втрати в НКТ і в колоні за такими ж формулами, що й під час нагнітання рідини розриву. Аналізуючи розрахунки п.7 бачимо, що гідровитрати під час нагнітання в’язкої рідини з mб.р = 40 мПа× с і rб.р = 1000 кг/м3 будуть більші ніж при нагнітанні води: