Смекни!
smekni.com

Дешифрование аэрофотоснимков (стр. 1 из 2)

Министерство образования и науки Российской Федерации

Якутский государственный университет им. М.К.Аммосова

Инженерно-технический факультет

Реферат по дисциплине «Инженерная геодезия»

на тему:

ДЕШИФРОВАНИЕ АЭРОФОТОСНИМКОВ

Выполнила студентка

З-ПГС-08

Мельнова Е.Б.

г.Якутск, 2009 г

СОДЕРЖАНИЕ

Введение

Глава 1. Аэрофотографическая съемка

Глава 2. Топографическое дешифрование аэрофотоснимков

Заключение

Список литературы


ВВЕДЕНИЕ

В современном мире аэрофотосъемка имеет важное значение. Полученные при аэрофотосъемке снимки особенно применимы в картографии, определении границ землевладений, видовой разведке, археологии, изучении окружающей среды, производстве кинофильмов и рекламных роликов и др. Ясно, каких огромных затрат и времени требует сплошное изучение, наземная съемка значительных территорий. Тем более этот подход малореален при комплексном изучении территории, ведь для одновременного изучения и растительного покрова, и почв, и геологического строения, и объектов хозяйственной деятельности человека требуется одновременно посылать на полевые работы специалистов многих профессий. Отметим также, что при проведении полевых обследований очень трудно, а для больших территорий невозможно, добиться синхронизированности, одновременности наблюдений во всех частях территории. Наблюдения в разных частях могут тогда относиться к разным фенологическим стадиям развития растений, разным состояниям погоды, разным этапам сельскохозяйственных работ. Короче, единственным этот метод сбора информации - в поле, при непосредственном посещении местности, при прямом контакте с ее объектами, быть не может. Он обязательно должен дополняться другими, неконтактными методами сбора информации, позволяющими охватить сразу значительные площади.

Эту задачу позволяет решить аэрофотосъемка. Первые аэрофотосъемки проводились еще с воздушных шаров на заре развития фотографии в середине XIX века, а уже в 20-30-е годы нашего века фотосъемка местности с самолетов стала широко применяться для создания лесных, топографических, геологических карт, для изыскательских работ.

Глава 1. АЭРОФОТОГРАФИЧЕСКАЯ СЪЕМКА

Аэрофототопографическая съемка – один из видов топографической съемки, который основан нафотографировании местности сверху: с борта тихоходных самолетов, вертолетов, искусственных спутников Земли. Сейчас она служит основным методом создания современных топографических планов и карт крупного масштаба, особенно на обширных труднодоступных и удаленных территориях, а также при комплексных и отраслевых исследованиях (геологических, почвенных, землеустроительных, инженерных и др.)

Важное преимущество аэрофотосъемки – объективность и информативность фотоснимков, по которым создается карта, а также то, что основной объем работы происходит в камеральных условиях. Она включает в себя собственно фотографирование, плановую и высотную подготовку снимков, дешифрование снимков и работы по обработке снимков – фотограмметрические работы.

Разные типы фотопленок позволяют получать различные типы снимков. Черно-белые АФС отображают объекты изменением тональности серого цвета; на цветных снимках местность изображается в цветах, близких к естественным; на спектрозональных снимках некоторые объекты, например растительные сообщества, изображаются в контрастных цветах, что облегчает их дешифрование.[1]

Чаще всего снимаемый участок не может быть размещен на одном снимке, тогда участок фотографируется последовательно маршрут за маршрутом. Съемочные маршруты летательного аппарата прокладываются прямолинейно, обычно с запада на восток и в обратном направлении, на постоянной высоте. При этом соблюдается перекрытие вдоль маршрута между снимками до 57-60% от рамки кадра и поперечное перекрытие между маршрутами – 20-40% от рамки кадра. Время съемки выбирается так, чтобы солнце не было скрыто облаками и стояло над горизонтом не слишком низко и не в зените (рис.1).

Рис. 1. Схема аэрофотографического залета и перекрытий снимков

Различают плановую и перспективную аэрофотосъемку. Плановая съемка – когда оптическая ось камеры отклоняется от отвесной линии не более чем на 3о; при большем угле наклона - съемка перспективная. В первом случае площадь, отображенная на одном снимке, будет меньше, но и искажения по краям снимка не будут такими сильными, как при перспективной съемке. [1]

Глава 2. ТОПОГРАФИЧЕСКОЕ ДЕШИФРОВАНИЕ АЭРОФОТОСНИМКОВ

аэрофототопографическая топографическая съемка дешифрование

Дешифрование – это процесс извлечения разнообразных информационных данных из фотоизображений земной поверхности. [3] При этом производится обнаружение, распознавание объектов, определение их географической сущности, установление их качественных и количественных характеристик и закрепление результатов изучения на снимке или карте условными знаками. Дешифрование не менее важно, чем сама аэрофотосъемка, так как является основным этапом создания и обновления топографических карт. Его качество зависит от оптических и геометрических свойств АФС, применяемых приборов, а также уровня знаний и опыта дешифровщика.

В зависимости от поставленных задач различают общегеографическое (топографическое и ландшафтное) и специальное (геологическое, почвенное, лесное, военное и др.) дешифрование.[3]

Топографическое дешифрование АФС производится с целью обнаружения и получения характеристик тех объектов, которые должны быть изображены на топографической карте. Оно может производится полевым, камеральным и комбинированным методом.

При полевом дешифровании объекты распознаются непосредственно на местности путем сличения АФС с натурой; при камеральном – изучают снимки в лабораторных условиях; при комбинированном – также и в поле, и по созданным эталонам дешифрования участков характерных ландшафтов.

Дешифрование АФС производится визуально или с помощью стереофотограмметрических приборов: стереоскопа, стереометра, стереопроектора. Во всех случаях дешифрование должно опираться на знание основных географических закономерностей и особенностей исследуемой местности, а также на изучение дешифровочных признаков объектов. Их делят на прямые и косвенные. Дешифровочными признаками считают характерные свойства объектов, по которым эти объекты могут быть обнаружены и опознаны.

Свойства объектов, отобразившиеся на АФС, называют прямыми признаками: размеры, форма, тень, цвет изображения объекта, а также структура фотоизображения.

Форма – основной прямой дешифровочный признак, выявляющий наличие объекта и некоторые его свойства. Например, на плановых аэрофотоснимках плоские объекты (пашни, озера и т.д.) сохраняют свои очертания. Тогда как вертикальные объекты (трубы, сооружения башенного типа и т.д.) изображаются в ортогональной проекции в центре снимка, а при удалении от центра (главной точки) приобретают все более перспективное.

Рис. 2. Определение формы объекта на АФС по изображению их теней

а – отклонение изображений высоких объектов. Тени объектов заштрихованы; б – определение высоты дерева h по длине его падающей тени l.

изображение, с наклоном от главной точки. По радиальному направлению форму объектов на АФС определяют по изображению их теней (рис. 2). Различают тени собственную и падающую. Часть объекта, расположенная со стороны, противоположной Солнцу, имеет собственную тень. Падающая тень отбрасывается объектом на поверхность Земли (другие предметы). Длина тени зависит от высоты Солнца и самого объекта. По теням на АФС определяют высоту объектов.

Размер изображения зависит от масштаба снимка. Линейная величина объекта определяется по формуле L=lm, где l – длина (ширина) объекта на снимке; L – длина объекта в натуре; m – знаменатель масштаба снимка.

Тон фотоизображения объекта зависит от степени почернения фотоэмульсионного слоя или яркости изображаемого объекта. Разный тон изображения на АФС обусловлен различной отражательной способностью, цветом объектов, условиями освещенности, качеством съемочной аппаратуры и фотоматериалов. Объекты с высоким коэффициентом яркости имеют на АФС более светлый тон (светлоокрашенные, сухие, гладкие, наиболее освещенные). А шероховатые и сильно увлаженные – более темный. [3]

Рисунок (структура) фотоизображения обусловлен повторяемостью и характером размещения отдельных деталей. Он создается закономерным сочетанием ряда элементов, составляющих объект, и передает структуру этого объекта.

Рис. 3. Признаки для определения направления течения реки по аэроснимку

1 – притоки впадают под острым углом к направлению течения; 2 – выносы протоков сносятся вниз по течению; 3 – слияние поток разной мутности; 4 – при обтекании препятствия (пороги, водопады) белые полосы вспененной воды вытянуты по течению; 5 – заводи слепым концом расположены против течения; 6 – заостренный конец косы направлен вниз по течению; 7 – остров имеет грушевидную форму с сужением вниз по течению; 8 – мели выгнуты по течению; 9 – зубцы отмелей на изгибах реки обращены вниз по течению; 10 – водохранилище имеет грушевидную форму с сужением вверх по течению; 11 – ледорезы перед мостом расположены вверх по течению; 12 – понтонные мосты и запани прогибаются вниз по течению.

Рисунок фотоизображения зависит от внутренних связей между компонентами ландшафта и процессов, происходящих в конкретном природном комплексе. Каждому природно-территориальному комплексу свойственен определенный рисунок, передающий его морфологические особенности. Различают бесструктурный рисунок, характерный для изображения спокойной водной поверхности, луговой растительности, и структурный – пятнистый, зернистый, точечный, полосатый и т.д. Например, пятнистый рисунок характерен для торфяно-бугристой тундры; полосатый – для изображения свежевспаханных полей; линейно-точечный – для посевов технических культур; зернистый отображает участки леса.