Смекни!
smekni.com

Кристаллы 2 (стр. 1 из 5)

Криста́ллы (от греч. κρύσταλλος, первоначально — лёд, в дальнейшем — горный хрусталь, кристалл) — твёрдые тела, в которых атомы расположены закономерно, образуя трёхмерно-периодическую пространственную укладку — кристаллическую решётку.

Кристаллы — это твёрдые вещества, имеющие естественную внешнюю форму правильных симметричных многогранников, основанную на их внутренней структуре, то есть на одном из нескольких определённых регулярных расположений составляющих вещество частиц (атомов, молекул, ионов).

наука о кристаллах, их структуре, возникновении и свойствах. Она тесно связана с минералогией, физикой твёрдых тел и химией. Исторически кристаллография возникла в рамках минералогии, как наука описывающая идеальные кристаллы.

* кристаллография изучает идеальные кристаллы c позиций законов симметрии и сопоставляет их с кристаллами реальными.

* структурная кристаллография занимается определением внутренней структуры кристаллов и классификацией кристаллических решеток.

* кристаллооптика изучает оптические свойства кристаллов.

* кристаллохимия изучает закономерности образования кристаллов из различных веществ и в разных средах.

Слово "кристалл" - греческое (κρισταλλος), исходное его значение - "лёд". Однако уже в античное время этот термин был перенесён на прозрачные природные многогранники других веществ (кварца, кальцита и т. п.), так как считалось, что это тоже лёд, получивший в силу каких-то причин устойчивость при высокой температуре. В русском языке это слово имеет две формы: собственно "кристалл", означающее возникшее естественным путем многогранное тело, и "хрусталь" - особый сорт стекла с высоким показателем преломления, а также прозрачный бесцветный кварц ("горный хрусталь"). В большинстве европейских языков для обоих этих понятий используется одно слово (сравните английские "Crystal Palace" - "Хрустальный дворец" в Лондоне и "Crystal Growth" - международный журнал по росту кристаллов).

Уже в глубокой древности было известно некоторое количество минералов, особенно таких, которые замечательны цветом, блеском, твердостью или какими-нибудь другими особенностями. Кроме золота, известного человеку с незапамятных времен, древние знали о драгоценных камнях, янтаре, асбесте и др. О янтаре, напр., известно, что он за 1800 лет до Р. Хр. уже составлял предмет торговли финикийских и сидонских купцов. О нем упоминает Гомер в своей Одиссее. Аристотель и его ученик Теофраст перечисляют те минералы, о которых сведения им были известны.

С кристаллами человечество познакомилось в глубокой древности. Связано это, в первую очередь, с их часто реализующейся в природе способностью самоограняться, т. е. самопроизвольно принимать форму изумительных по совершенству полиэдров. Даже современный человек, впервые столкнувшись с природными кристаллами, чаще всего не верит, что эти многогранники не являются делом рук искусного мастера. Их орнаментные модели можно найти на резных каменных шарах, созданных в период позднего неолита, в Шотландии, как минимум за 1000 лет до Платона. В костях, которыми люди играли на заре цивилизации, уже угадываются формы правильных многогранников. Форме кристаллов издавна придавалось магическое значение, о чём свидетельствуют некоторые археологические находки [1]. Упоминания о "кристалле" (по-видимому, всё-таки речь идёт о "хрустале") неоднократно встречаются в Библии (см., напр.: Откровение Иоанна, 21, 11; 32, 1, и др.). В среде математиков существует аргументированное мнение, что прототипами пяти правильных многогранников (тел Платона) послужили природные кристаллы. Многим архимедовым (полуправильным) многогранникам также имеются точные или очень близкие аналоги в мире кристаллов. А в прикладном искусстве древности иногда в качестве образцов для подражания использовались кристаллические многогранники, причём и такие, которые заведомо не рассматривались тогдашней наукой.

В значительной мере правильные многогранники были изучены древними греками. Некоторые источники (такие как Прокл Диадох) приписывают честь их открытия Пифагору. Другие утверждают, что ему были знакомы только тетраэдр, куб и додекаэдр, а честь открытия октаэдра и икосаэдра принадлежит Теэтету Афинскому, современнику Платона. В любом случае, Теэтет дал математическое описание всем пяти правильным многогранникам и первое известное доказательство того, что их ровно пять.

Правильные многогранники характерны для философии Платона, в честь которого и получили название «платоновы тела». Платон писал о них в своём трактате Тимей (360г до н. э.), где сопоставил каждую из четырёх стихий (землю, воздух, воду и огонь) определённому правильному многограннику. Земля сопоставлялась кубу, воздух — октаэдру, вода — икосаэдру, а огонь — тетраэдру. Для возникновения данных ассоциаций были следующие причины: жар огня ощущается чётко и остро (как маленькие тетраэдры); воздух состоит из октаэдров: его мельчайшие компоненты настолько гладкие, что их с трудом можно почувствовать; вода выливается, если её взять в руку, как будто она сделана из множества маленьких шариков (к которым ближе всего икосаэдры); в противоположность воде, совершенно непохожие на шар кубики составляют землю, что служит причиной тому, что земля рассыпается в руках, в противоположность плавному току воды. По поводу пятого элемента, додекаэдра, Платон сделал смутное замечание: «…его бог определил для Вселенной и прибегнул к нему в качестве образца». Аристотель добавил пятый элемент — эфир и постулировал, что небеса сделаны из этого элемента, но он не сопоставлял его платоновскому пятому элементу.

Евклид дал полное математическое описание правильных многогранников в последней, XIII книге Начал. Предложения 13—17 этой книги описывают структуру тетраэдра, октаэдра, куба, икосаэдра и додекаэдра в данном порядке. Для каждого многогранника Евклид нашёл отношение диаметра описанной сферы к длине ребра. В 18-м предложении утверждается, что не существует других правильных многогранников. Андреас Шпейзер отстаивал точку зрения, что построение пяти правильных многогранников является главной целью дедуктивной системы геометрии в том виде, как та была создана греками и канонизирована в «Началах» Евклида[1]. Большое количество информации XIII книги «Начал», возможно, взято из трудов Теэтета.

Однако, первое наиболее подробное и полное описание минералов дает Плиний Старший (в 79 г. после Р. Хр.).

После значительного перерыва в развитии М., вследствие падения греческой и римской культур, длившегося почти целое тысячелетие, только в сочинении арабского врача Авицены мы видим, что минералогические познания понемногу развивались: Авицена различает уже среди минералов камни, горючие минералы, соли и металлы. Первая попытка представить более точное, научное описание минералов и установить для них систему принадлежит саксонскому натуралисту и врачу Георгу Агриколе (1490 - 1555), который характеризует минералы по их форме, цвету, блеску, твердости и спайности.

В XVI веке немецкий астроном Иоганн Кеплер пытался найти связь между пятью известными на тот момент планетами Солнечной системы (исключая Землю) и правильными многогранниками. В «Тайне мира», опубликованной в 1596 году, Кеплер изложил свою модель Солнечной системы. В ней пять правильных многогранников помещались один в другой и разделялись серией вписанных и описанных сфер. Каждая из шести сфер соответствовала одной из планет (Меркурию, Венере, Земле, Марсу, Юпитеру и Сатурну). Многогранники были расположены в следующем порядке (от внутреннего к внешнему): октаэдр, за ним икосаэдр, додекаэдр, тетраэдр и, наконец, куб. Таким образом, структура Солнечной системы и отношения расстояний между планетами определялись правильными многогранниками. Позже от оригинальной идеи Кеплера пришлось отказаться, (основываясь на материалах, собранных пражским астономом и астрологом Тихо Браге) но результатом его поисков стало открытие двух законов орбитальной динамики — законов Кеплера, — изменивших курс физики и астрономии, а также правильных звёздчатых многогранников (тел Кеплера-Пуансо). Кроме того, Кеплер очень подробно проанализировал симметрию снежинок. Исследования по симметрии привели его к предположениям о плотной упаковке шаров, согласно которым наибольшая плотность упаковки достигается при пирамидальном упорядочивании шаров друг над другом.

1611 год

В тот зимний день Иоганн Кеплер шел по Праге, погруженный в глубокие раздумья. Шел снег. Сначала он падал отдельными кристалликами, а потом, сбившись в белые хлопья, повалил, усиливаясь, ослабевая и нарастая с новой силой. Кеплер размышлял о подарке на Новый год своему другу Иоганну фон Вакенфельсу, золотому рыцарю, любителю наук и крестному отцу одного из его сыновей. Будучи математиком при дворе Рудольфа II, покровителя наук и искусств, Иоганн Кеплер не имел ни гроша в кармане. Казна короля была, как всегда, пуста, и Кеплеру, как всегда, задерживали жалованье. Однако наш герой был полон сил и идей.

В далеком прошлом остались лишения, которые ему суждено было испытать в детстве. С семи лет Иоганн прислуживал в кабаке. Обладавший от рождения пытливым умом, но слабым здоровьем, в 13 лет мальчик заболел так, что родители не надеялись на его выздоровление. Но плохое здоровье оказало Иоганну неоценимую услугу. К 18 годам стало совершенно очевидно, что юноша непригоден ни к какой физической работе, и его отдали в богословы. Теология? Нет, математика и философия покорили его сердце: он пришел в восторг от красоты коперниковской модели Солнечной системы и навсегда связал свою жизнь с математикой.

Так что вернемся в новогоднюю Прагу. Новый год — самое подходящее время для чудес и прекрасная возможность поблагодарить своего друга. Друг Иоганна Кеплера был большим любителем загадочного Ничто — всего самого малого и неощутимого, что есть в каждом предмете. И падающие снежинки оказались замечательным подарком для изысканного ценителя маленьких вещей. Но послушаем самого Кеплера, для которого «Ничто» и снег оказались почти одним и тем же. «Если спросить германца о том, что такое „Nis“ („снег“ по-латыни), он ответит „Nihil“ („ничто“), если, конечно, сумеет сказать по-латыни». И если вам, дорогой читатель, по душе такие размышления, последуем за придворным ученым.