Газы, способные к образованию газогидратной формы в литосфере Земли (стр. 1 из 3)

Содержание.

1.Аннотация……………………………………………………………………………4

2.Введение................................................... ………………………………………………..5

3.История изучения гидратов газов…………………………………………………6

4.Газы, способные к образованию газогидратной формы в литосфере Земли…...................................................... ……………………………………………….9

5.Условия образования гидратов газов…... ………………………………………..10

6.Новые методы наблюдения за образованием гидратов…………………………11

7.География распространения газов-гидратов……………………………………12

8.Районы современной разведки на гидраты…........................................................14

9.Проблема промышленного освоения газогидратной формы скопления углеводородов............................. ………………………………………………15

10.Методы добычи метана из гидратов……………………………………………17

11 .Другие возможности использования гидратов газов…………………………18

12.Заключение................................ ………………………………………………20

13.Терминологический словарь

14.Список используемой литературы

Аннотация

В своей работе я раскрываю понятие о газогидратах, даю их краткую характеристику, привожу факторы о росте активности исследований, а так же рассматриваю характеристику распространения газогидратов на суше и на дне морей и океанов, и особенностей их транспортировки и хранения.

В своей работе я постарался обобщить научные труды таких выдающихся ученых, как: Х.Дэви, Фарадей, Розебум, Гаммершмидт, Дж. Пристли, Б.Пелетье, и В.Карстен.

Введение.

Углеводороды представляют собой особые соединения широко распространенных элементов — водорода и углерода. Эти природные соединения добывают и используют уже тысячи лет: при строительстве дорог и зданий в качестве связую­щего материала, при строительстве и изготовлении водонепроницаемых корабельных корпусов и корзин, в живописи, для создания мозаичных полотен, для приготовления пищи и освещения. Сначала их добывали из редких выходов на поверхность, а затем из скважин. За последние два столетия добыча нефти и газа достигла беспрецедентных масштабов. Сейчас нефть и газ являются источниками энергии для почти всех видов человеческой деятельности.

Гидраты природных газов являются особым сочетанием двух широко распространенных веществ, воды и природного газа. Если эти вещества вступают в контакт при высоком давлении и низкой температуре, то происходит формирование твердой массы, похожей на лед. Огромные объемы отложений в придонных слоях океанического дна и в полярных регионах они находятся в термобарических условиях, допускающих образование гидратов.

Синонимами термина гидраты являются газовые гидраты, метановые гидраты или клатраты( от греческого « каркас»). Основным структурным элементом гидратов является кристаллическая ячейка из молекул воды, внутри которой размещена молекула газа. Ячейки образуют плотную кристаллическую решетку. Структура гидратов подобна структуре льда, но отличается от последней тем, что молекулы газа расположены внутри кристаллических ячеек, а не между ними. Внешне гидраты похожи на лед, хотя увидеть их можно не часто. Однако они ведут себя совсем не так, как лед. Если поднести к ним спичку, они загораются.

Когда-нибудь, возможно уже в 21 веке, традиционные запасы углеводородов не смогут обеспечивать энергией растущую экономику и население. Тогда их место смогут занять так называемые нетрадиционные запасы углеводородов в виде газовых гидратов.


История изучения гидратов газов.

Первая публикация, связанная с гидратами газов, относится к 1811 г., когда английский химик X. Дэви, пропуская хлор через, воду при атмосферном давлении и температурах, близких к 0° С получил в стеклянной колбе желтоватый осадок — гидрат хлора. Нестабильность полученного соединения и уровень инструментальных исследований тех лет не позволили ему детально изучить его свойства.

В 1823 г. Фарадеем были выполнены первые анализы состава гидрата хлора, а в 1884 г. Розебум предложил формулу состава гидрата хлора 8Н2 0-С12 . В период между двадцатыми и восьмидесятыми годами прошлого века исследований гидратов газов почти не проводилось. Газогидратные соединения были забыты на долгие десятилетия, и лишь в восьмидесятых годах прошлого столетия начинается второй этап изучения гидратов газов .В течение пяти десятилетий были получены гидраты большинства индивидуальных газов и некоторых смесей. За этот период исследовались зависимости образования гидратов от давления и температуры, был определен приближенно состав гидратов, построены фазовые диаграммы. Результаты экспериментальных исследований обрабатывались с учетом достижений термодинамики того времени. Однако все исследования гидратов газов, выполненные в течение 120 лет — вплоть до начала тридцатых годов XX в., носили чисто академический характер. Гидраты газов не использовались в промышленности, они не мешали технологическим процессам того времени и не находили практического применения. В тридцатых годах бурно развивающаяся газодобывающая промышленность поставила перед исследователями задачу серьезного изучения гидратов газов, в первую очередь с целью разработки методов предупреждения их

образования и скопления в трубопроводах и аппаратах при добыче и транспорте газа.

В этот период была опубликована работа Гаммершмидта, в которой было показано, что осложнения в газопроводах в холодное время года связаны не с замерзанием воды, как это предполагалось, а с образованием гидратов транспортируемых газов.

Начался третий этап исследований гидратов газов. Период прикладного изучения гидратов газов длился более 20 лет. За этот период были разработаны практически все известные методы борьбы с гидратами. В последние десятилетия ведутся исследования некоторых свойств гидратов газов с привлечением современных инструментальных методов, развиваются серьезные теоретические исследования, в результате которых не только совершенствуются методы борьбы с гидратами, но и разрабатываются методы их практического использования в различных технологических процессах.

Особое место в изучении гидратов занимают исследования, связанные с открытием газогидратных залежей в осадочном чехле земной коры, сделанного группой ученых: В. Г. Васильевым, Ю. Ф. Макогоном, Ф. А. Требиным, А. А. Трофимуком и Н. В. Черским .

В изучение проблемы гидратов газов значительный вклад внесли советские ученые, в числе которых можно назвать Б. А. Никитина, И. Н. Стрижева, И. Б. Ходановича, М. X. Шахназарова, Г. А. Саркисьянца, П. А. Теснера, Ф. А. Требина, Ю. П. Коротаева, Н. В. Черского, Ф. К. Андрющенко, В. А. Хорошилова, С. Ш. Быка, В. И. Фомину, В. П. Царева, В. П. Васильченко, В. И. Шагайденко, А. М. Кулиева, Р. М. Мусаева, А. Джавадова, А. Алиева и др.


Термобарические условия существования газов-гидратов.

Рис. 3.1 Условия образования гидратов индивидуальными компонентами компонентами природных газов (Бык, Фомина, 1970)

Каждый отдельный компонент имеет определенную критическую температуру, выше которой гидраты данного компонента не образуются. Такая температура определяется точкой пересечения равновесной кривой гидратообразования с кривой упругости паров данного компонента. Метан и азот, а также инертные газы не имеют критической температуры гидратообразования, так как линия упругости их паров заканчивается в критической точке газа до соприкосновения с кривой упругости паров гидрата.

На рисунке 3.1 видно, что наибольшую критическую температуру имеет сероводород, который может образовывать гидраты при температуре 29,5°С и давлении 21 атм. С увеличением содержания в газе, так называемых, не гидратообразующих компонентов (N2 , H2 Не2 ) давление образования гидратов повышается и при наличии их в смеси более 50% образование гидратов данной смеси становится невозможным.


Газы, способные к образованию гидратной формы в литосфере Земли.

Еще в 1811 году английский химик Х.Дэви, пропуская хлор через воду при атмосферном давлении и температурах, близких к 273К, получил в стеклянной колбе желтоватый осадок - гидрат хлора. Как оказалось это далеко не единственный газ, способный образовывать соединения с водой. Все низшие гомологи метана, углекислый газ, азот, сероводород и др. образуют гидраты, которые образуются при определенных термобарических условиях.

Благоприятные условия для образования гидратов природных газов существуют как на суше(преимущественно в областях распространения многолетнемерзлых пород), так и практически на всей площади Мирового океана, что обусловлено благоприятным для их образования сочетанием температур и давлений.

В большинстве случаев, природные газогидраты представлены гидратами метана и диоксида углерода.


Новые методы наблюдения за образованием гидратов газов.

Газовые гидраты можно получить в лаборатории из газа и воды, но это сложный процесс. Гидраты образуются очень медленно, даже если температура и давление в аппарате вполне соответствуют термодинамическим условиям устойчивости гидратов. Процесс оказывается в значительной мере саморегулируемым: по мере увеличения давления и снижения температуры на поверхности контакта газа и воды и образуется твердый слой гидратов,если он не подвергается внешнему воздействию, эффективно препятствует дальнейшему гидратообразованию. Этот гидратный барьер можно разрушить активным перемешиванием, и потому многие исследователи размещают в аппаратах дробилки для ускорения кристаллизации. И даже при таком подходе требуется несколько дней для заполнения небольшого аппарата.