Смекни!
smekni.com

“Космические технологии (научно-технические, экологические и экономические аспекты)”. (стр. 2 из 6)

В Ленинграде подобные исследования проводились в Газодинамической лаборатории (ГДЛ). В 1929 г. заведующий отделением ГДЛ Валентин Петрович Глушко (1908-1989) изобрел первый в мире электротермический ракетный двигатель, реактивную тягу в котором создавала струя газа, нагретого до высокой температуры электрическим током. Однако такой двигатель не мог вывести космический аппарат за пределы атмосферы, поэтому дальнейшие усилия группа под руководством Глушко сосредоточила на проектах ЖРД. В 1931 г. появился жидкостный ракетный двигатель ОРМ-1, работавший на смеси горючего (бензина или толуола) с окислителем (четырехокисью азота), а в 1933 г. – усовершенствованный двигатель жидкостного типа ОРМ-52. Его можно было установить не только на ракете, но также на истребителе И-4 (как дополнительный мотор) и на морской торпеде.

Развитию ракетостроения в Германии способствовали исследования профессора физики и математики Германа Оберта (1894-1989). Он обосновал возможность применения ракет в верхних слоях атмосферы, предложил использовать в двигателях различные топливные комбинации. Идеи Оберта заинтересовали многих ученых, и в 1927 г. группа энтузиастов основала в Германии Общество межпланетных сообщений. В 1930 г. под руководством Г. Оберта был создан ракетный двигатель “Кегельдюзе”, работавший на бензине и жидком кислороде, и построена ракета “Мирак” с этим двигателем. Испытания на берлинском полигоне Рейникендорф показали, что конструкция двигателя взрывоопасна и требует дальнейшей доработки. Тогда Оберт с помощниками построил новую, более надежную ракету “Репульсор”. Она поднималась на высоту порядка 1500 м.

В начале 30-х гг. деятельность энтузиастов перестала получать поддержку. Во-первых, в это время Германия переживала экономический кризис, а во-вторых, опыты с ракетами вызывали протесты жителей кварталов, прилегавших к полигону. В 1934 г. Общество межпланетных сообщений прекратило существование, но его разработками заинтересовались военные.

В 1933 г. при Управлении вооружений было организовано специальное подразделение по ракетной технике. Его сотрудник Вернер фон Браун (1912-1977) стал впоследствии ведущим конструктором Германии, а с 1945 г. – США. В 1934 г. на острове Бернум в Северном море под руководством фон Брауна проводились испытания ракет А-2, летавших на смеси жидкого кислорода и спирта; они достигали высоты 1500-200 м.

Очень скоро все работы над ракетами с ЖРД были засекречены, и начались целенаправленные исследования в интересах армии. На Балтийском побережье Германии, в местечке Пенемюнде, в 1937 г. построили крупный ракетный исследовательский центр.

По заданию Управления вооружений группа фон Брауна в 1942 г. создала крупную ракету А-4, известную во всем мире как V-2 (“Фау-2”). Ракета была способна доставлять боевую головку массой 1 т на расстояние до 275 км. В сентябре 1944 г. гитлеровские войска применили “Фау-2” для массированной бомбардировки Лондона. “Оружие возмездия”, как называли ракету немецкие военные, не смогло спасти фашистскую Германию от поражения во Второй мировой войне. Профессор фон Браун переехал в США, где продолжил свои исследования.

Выдающийся конструктор и ученый С. П. Королев стал в СССР ведущим специалистом в области ракетной техники еще до Второй мировой войны. 17 августа 1933 г. под его руководством в районе подмосковного поселка Нахабино была успешно запущена ракета ГИРД-09, работавшая на смеси жидкого кислорода и отвержденного бензина. Этот аппарат достиг высоты около 400 м. Спустя три года Королев спроектировал ракетопланер, поднимавшийся в воздух с помощью самолета – буксировщика. Первый полет состоялся 28 февраля 1940 г., включение ЖРД производилось на высоте 2600 м.

Менее чем через два десятилетия, 4 октября 1957 г., с помощью межконтинентальной баллистической ракеты Р-7, разработанной конструкторским бюро С. П. Королева, был осуществлен запуск первого в мире искусственного спутника Земли. Так была открыта космическая эра в истории человечества.

III. Байконур – главный космодром начала космической эры.

Решение о создании космодрома было принято в 1953 году, когда в нашей стране работал космодром Капустин Яр, придуманный для запуска целого ряда реактивных аппаратов, созданных под руководством С. П. Королева. На этом же космодроме осуществлены и первые запуски геофизических ракет под руководством академика А. А. Благонравова. Они дали очень многое для исследования космического пространства вплоть до высоты 400 км. Для создания первой межконтинентальной баллистической ракеты требовалась новая база, которая бы обеспечила соответствующую дальность полета. Траекторию полета следовало выбирать так, чтобы она проходила над малонаселенными пунктами с запада на восток. Энергетически выгоден запуск ракет именно в этом направлении, так как Земля своим вращением добавляет скорость. Из трех вариантов был выбран Байконур. Старт отсюда позволял осуществлять трассу длиной 6400 км через Камчатку. Строительство развернулось очень быстро. В тяжелейших условиях – температура до +45оС, пыль, грязь, очень много змей – люди строили космодром. Подчас в жуткой жаре отказывала техника, не заводились моторы, а люди выдерживали. Требования к качеству строительства были очень высокие. Конструкции должны быть прочными и долговечными. Основным являлось сооружение пускового стартового комплекса. С него и начато было строительство, затем развернуты все работы по строительству пускового минимума, т. е. наименьшее количество сооружений и оборудования, которые необходимы для первого пуска. Сюда входят электростанция, железная и шоссейная дороги, монтажный корпус, компрессорная, стартовые устройства и т. д. Специалисты, уже имевшие опыт Капустина Яра, творили чудеса, усилия всех строителей совершили чудо. Даже Королев не поверил: “Неужели создали?! В такой короткий срок!” 15 мая 1957 года в 18 часов 50 минут был произведен старт первой межконтинентальной баллистической ракеты. Эту дату не принято отмечать. Но о ней помнят как об одной из всех отечественной космической техники. Именно к ней был приурочен запуск ракеты-носителя “Энергия”, которая стартовала в этот день тридцать лет спустя. При телевизионных передачах из Байконура видно, как происходит выход ракеты из стартовых опор. Они отходят, раскрываясь, как лепестки тюльпана, которых так много весной в степи! Космодром – это не только гражданское сооружение, это полигон передовой инженерной мысли. Здесь проводятся все виды наземных и летных испытаний ракетно-космической техники. Здесь же располагаются хранилища для ракет-носителей, техники, заводы по производству компонентов криогенного топлива (здесь вырабатываются в год тысячи тонн жидкого кислорода и азота). Есть заправочные станции космических аппаратов, сложные контрольные системы оборудования, системы автоматического регулирования и управления. Все это обслуживается опытными и квалифицированными специалистами. Люди готовят ракеты к испытаниям, “учат” их летать. В состав космодрома входят также и оборудованные поля падения. Ракеты ведь, как правило, трехступенчатые, а то и четырехступенчатые, с разгонными блоками. Их нельзя отбрасывать куда попало – есть специальные отведенные места на удалении 300-400 км для первой ступени, 1200-1500 км для второй ступени. На космодроме работает метеослужба, расчетный центр, служба безопасности, анализа полученных измерений, химическая, аэродромная, автомобильная, медицинская.

Космодром – это целый комплекс, удивительный научно-технический город, где трудятся замечательные люди.

IV. Как устроена ракета?

Корпус, двигатель, топливо, приборы и полезная нагрузка. Корпуса, цилиндрические тела ракет делаются из легких, прочных материалов: дюралюминия, титана, иногда из пластмассы. Двигатели у большинства современных ракет жидкостные, реактивные. В космосе нет кислорода, приходится, как говорят, возить горючее и окислитель. В камерах жидкостных двигателей горят спирт, керосин, а также другие виды высококалорийного топлива. Окислители – чистый кислород, азотная кислота. Есть ракеты, работающие на твердом топливе, у них горючее и окислитель в готовой смеси. “Пища” таких двигателей – порох различного состава. В последнее время ученые и инженеры работают над новыми видами твердого топлива, над новыми конструкциями ракетных двигателей. Например, ионный: электрическое поле разгоняет ионы – заряженные осколки атомов, “производимые” специальным генератором; или плазменный: смесь электронов и ионов разгоняется электрическим и магнитным полями. В ядерном двигателе рабочее вещество нагревается в реакторе, затем выбрасывается через сопло. Во всех типах ракет струя газов выбрасывается через отверстие – сопло – назад, толкая ракету вперед. Двигатель – это сила корабля, но сила слепая, без разума. Разум ракеты – ее приборы. Они строго следят за каждым колебанием, не дают отклониться от расчетной траектории.

V. Как устроен искусственный спутник?

Прорыв в космос совершила двухступенчатая ракета-носитель “Спутник”, трехступенчатые ракеты-носители “Восток” вывели на орбиту первые космические корабли с человеком на борту. С их помощью стартовали первые лунные станции, спутники серии “Космос”. Появление трехступенчатой ракеты-носителя “Союз” еще более расширило возможности космонавтики. Тяжелая многоступенчатая ракета-носитель “Протон”, способная нести на своем борту 20 тонн полезной нагрузки, помогла начать исследования Марса, Венеры и других планет, вывела в космос орбитальные станции “Салют” и “Мир”, которые служили и служат космическим домом для людей, работающих на орбите. В космическом комплексе размещаются оборудование, приборы, запасы воды и пищи, материалов. Космическая станция напоминает сразу и дом, и лабораторию, и машину, до отказа начиненную разнообразной техникой. Главное помещение станции – основной отсек – представляет собой два цилиндра разных диаметров, соединенных между собой конусом. В малом цилиндре располагаются рабочие места космонавтов и центральный пульт управления станцией. В конусе – “стадион” (самодвижущаяся дорожка) и другое оборудование для тренировки и медицинского контроля за здоровьем экипажа. При длительном полете приходится тренироваться каждый день, иначе мышцы в невесомости ослабнут. В большом цилиндре расположен холодильник, хранятся запасы воды и пищи, установлено устройство для подогрева воды. Здесь же оборудованы и специальные места: на ночь каждый космонавт укладывается в персональный спальный мешок и пристегивается ремнем. За стенкой основного отсека располагается негерметизируемый отсек с корректирующей двигательной установкой. С ее помощью космонавты по мере надобности меняют положение станции в пространстве, время от времени поправляют ее орбиту.