Смекни!
smekni.com

Учебно-методическое пособие представляет собой первую часть конспекта лекций по дисциплине «Компьютерные сети и системы» (стр. 20 из 28)

При использовании многомодового оптического кабеля (самой распространенной среды передачи FDDI) расстояние между станциями составляет до 2 км, при использовании одномодового оптического кабеля – до 20 км. В присутствии повторителей максимальная протяженность сети FDDI может достигать 200 км и содержать до 1000 узлов.

Формат маркера FDDI:

Преамбула

Начальный
разделитель SD

Контроль
пакета FC

Концевой
разделитель ED

Статус
пакета FS

8

1

1

1

Формат пакета FDDI:

Преамбула SD FC DA SA Info FCS ED FS
8 1 1 2 или 6 2 или 6 Данные 4

Преамбула предназначена для синхронизации. Несмотря на то, что изначально его длина равна 64 битам, узлы могут динамически изменять ее в соответствии со своими требованиями к синхронизации.

Начальный разделитель SD. Уникальное однобайтовое поле, предназначенное для идентификации начала пакета.

Контроль пакета FC. Однобайтовое поле вида CLFFTTTT, где бит С устанавливает класс пакета (синхронный или асинхронный обмен), бит L - индикатор длины адреса пакета (2 или 6 байт). Допускается использование в одной сети адресов и той, и другой длины. Биты FF (формат пакета) определяют, принадлежит ли пакет подуровню МАС (т.е. предназначен для целей управления кольцом) или подуровню LLC (для передачи данных). Если пакет является пакетом подуровня МАС, то биты ТТТТ определяют тип пакета, содержащего данные в поле Info.

Назначение DA. Определяет узел назначения.

Источник SA. Определяет узел, передавший пакет.

Информация Info. Это поле содержит данные. Они могут быть данными типа МАС или данными пользователя. Длина этого поля переменная, но ограничена максимальной длиной пакета в 4500 байт.

Контрольная сумма пакета FCS. Содержит CRC - сумму.

Концевой разделитель ED. Имеет длину полбайта для пакета и байт для маркера. Идентифицирует конец пакета или маркера.

Статус пакета FS. Это поле произвольной длины и содержит биты “Обнаружена ошибка”, “Адрес опознан”, “Данные скопированы”.

Самая очевидная причина дороговизны FDDI связана с использованием оптоволоконного кабеля. Свой вклад в дороговизну сетевых плат FDDI сделала также их сложность (дающая такие достоинства, как встроенное управление станцией, избыточность).

Характеристики сети FDDI

Среда передачи

Оптоволоконный кабель или витая пара UTP категории 5

Максимальный диаметр двойного кольца

100 км (для оптоволоконного кабеля)

Максимальное число станций двойного подключения

500

Максимальная длина кабеля между узлами сети

Для оптоволоконного многомодового кабеля - 2 км, для витой паря – 100 м

Fast Ethernet и 100GV-AnyLAN

В процессе разработки более производительной сети Ethernet специалисты разделились на два лагеря, что в конце концов привело к появлению двух новых технологий локальных сетей – Fast Ethernet и 100VG-AnyLAN.

Около 1995 г. обе технологии стали стандартами IEEE. Комитет IEEE 802.3 принял спецификацию Fast Ethernet в качестве стандарта 802.3u, который не является самостоятельным стандартом, а является дополнением к стандарту 802.3 в виде глав с 21 по 30.

Комитет 802.12 принял технологию 100VG-AnyLAN, которая использует новый метод доступа к среде передачи Demand Priority и поддерживает кадры двух форматов – Ethernet и Token Ring.

Fast Ethernet

Все отличия технологии Fast Ethernet от стандартной Ethernet сосредоточены на физическом уровне. Уровни MAC и LLC в Fast Ethernet по сравнению с Ethernet остались неизменными.

Более сложная структура физического уровня технологии Fast Ethernet вызвана тем, что в ней используется три варианта кабельных систем:

· волоконно-оптический многомодовый кабель (используются два волокна);

· витая пара категории 5 (используются две пары);

· витая пара категории 3 (используются четыре пары).

Коаксиальный кабель в Fast Ethernet вообще не используется. Отказ от коаксиального кабеля привел к тому, что сети Fast Ethernet всегда имеют иерархическую древовидную структуру, построенную на концентраторах, как и сети 10Base-T/10Base-F. Основным отличием конфигураций сетей Fast Ethernet является сокращение диаметра сети до 200 м, что связано с 10-кратным уменьшением времени передачи кадра минимальной длины из-за увеличения скорости передачи.

Тем не менее, это ограничение не очень препятствует построению крупных сетей Fast Ethernet в связи с бурным развитием в 90-х годах локальных сетей на основе коммутаторов. При использовании коммутаторов протокол Fast Ethernet может работать в полнодуплексном режиме, в котором нет ограничений на общую длину сети, накладываемых способом доступа к среде передачи CSMA/CD, а остаются только ограничения на длину физических сегментов.

Ниже рассматривается полудуплексный вариант работы технологии Fast Ethernet, который полностью соответствует методу доступа, описанному в стандарте 802.3.

Официальный стандарт 802.3u установил три различных спецификации Fast Ethernet и дал им следующие названия:

· 100Base-TX для двухпарного кабеля на неэкранированной витой паре UTP категории 5 или экранированной витой паре STP Type 1;

· 100Base-FX для многомодового оптоволоконного кабеля с двумя волокнами и длиной волны лазера 1300 нм;

· 100Base-T4 для 4-парного кабеля на неэкранированной витой паре UTP категорий 3, 4 или 5.

Для всех трех стандартов справедливы следующие общие утверждения:

· Форматы кадров Fast Ethernet не отличаются от форматов кадров классического 10-мегабитного Ethernet;

· Межкадровый интервал IPG в Fast Ethernet равен 0,96 мкс, а битовый интервал – 10 нс. Все временные параметры алгоритма доступа, измеренные в битовых интервалах, остались прежними, поэтому изменения в разделы стандарта, касающиеся уровня MAC, не вносились;

· Признаком свободного состояния среды является передача по ней символа Idle соответствующего избыточного кода (а не отсутствие сигнала, как в стандарте Ethernet).

Физический уровень включает три компонента:

· подуровень согласования (Reconciliation Sublayer);

· независимый от среды передачи интерфейс MII (Media Independent Interface) между уровнем согласования и устройством физического уровня;

· устройство физического уровня (Physical Layer Device – PHY).

Подуровень согласования нужен для того, чтобы уровень MAC, рассчитанный на интерфейс AUI, мог работать нормально с физическим уровнем через интерфейс MII.

Устройство физического уровня PHY обеспечивает кодирование данных, поступающих от MAC – подуровня для передачи их по кабелю определенного типа, синхронизацию передаваемых по кабелю данных, а также прием и декодирование данных в узле - приемнике. Оно состоит из нескольких подуровней (рис.19):

· подуровня логического кодирования данных, преобразующего поступающие от уровня MAC байты в символы кода 4B/5B или 8B/6T;

· подуровней физического присоединения и подуровня зависимости от физической среды, обеспечивающих формирование сигналов в соответствии с методом физического кодирования, например, NRZI или MLT-3;

· подуровня автопереговоров, который позволяет всем взаимодействующим портам выбрать наиболее эффективный режим работы, например, полудуплексный или полнодуплексный (этот подуровень является факультативным).

Интерфейс MII. MII представляет собой спецификацию сигналов TTL-уровня и использует 40-контактный разъем. Существует два варианта реализации интерфейса MII: внутренний и внешний.

При внутреннем варианте микросхема, реализующая подуровни MAC и согласования, с помощью интерфейса MII соединяется с микросхемой трансивера внутри одного и того же конструктива, например, платы сетевого адаптера или модуля маршрутизатора. Микросхема трансивера реализует все функции устройства PHY. При внешнем варианте трансивер выделен в отдельное устройство и подсоединяется с помощью кабеля MII.

Интерфейс MII использует 4-битные порции данных для параллельной передачи их между подуровнями MAC и PHY. Каналы передачи и приема данных от MAC к PHY и наоборот синхронизируются тактовым сигналом, генерируемым уровнем PHY. Канал передачи данных от MAC к PHY стробируется сигналом «Передача», а канал приема данных от PHY к MAC - сигналом «Прием».

Данные о конфигурации порта хранятся в двух регистрах: регистре управления и регистре статуса. Регистр управления используется для установки скорости работы порта, для указания, будет ли порт принимать участие в процессе автопереговоров о скорости линии, для задания режима работы порта (полу- или полнодуплексный).

Регистр статуса содержит информацию о действительном текущем режиме работы порта, в том числе и о том, какой режим выбран в результате автопереговоров.

Физический уровень спецификаций 100Base-FX/TX. Эти спецификации определяют работу протокола Fast Ethernet по многомодовому оптоволоконному кабелю или кабелям UTP кат.5/STP Type 1 в полудуплексном и полнодуплексном режимах. Как и в стандарте FDDI, каждый узел здесь соединяется с сетью двумя разнонаправленными сигнальными линиями, идущими от приемника и от передатчика узла соответственно.

Рис.19. Отличия технологии Fast Ethernet от технологии Ethernet

В стандартах 100Base-FX/TX на подуровне физического присоединения используется один и тот же метод логического кодирования 4B/5B, куда он без изменения перенесен из технологии FDDI. Для отделения начала кадра Ethernet от символов простоя Idle используются запрещенные комбинации Start Delimiter и End Delimiter.