Смекни!
smekni.com

1. Виды растворов. Причины образования водных растворов. 4 (стр. 4 из 4)

CN- + Н2О = ОН- + HCN.

Подобно раствору KCN, раствор ацетата натрия также имеет щелочную среду, что видно из молекулярного и со­кращенного ионного уравнений гидролиза:

CHgCOONa + Н2О = СН3СООН + NaOH; СН3СОО- + Н2О = СН3СООН + ОН-.

Сокращенное ионное уравнение показывает, что гидро­лиз соли, образованной сильным основанием и слабой кислотой, идет по аниону слабой кислоты и реакция сре­ды становится щелочной.

Соли, образованные слабым основанием и сильной кислотой.

Примером такой соли является йодид аммония NH4I. При растворении этой соли в воде катион аммония связы­вает гидроксид-ион ОН- воды, а ионы водорода накапли­ваются в растворе:

NH4I + Н2О = NH4OH + HI; NH4+ + Н2О = NH4OH + H+.

В результате гидролиза данной соли в растворе, образу­ются слабое основание NH4OH и сильная кислота HI. Йодоводородная кислота является сильным электролитом и в водном растворе полностью распадается на ионы. Кон­центрация ионов водорода становится значительно боль­ше, чем концентрация гидроксид-ионов, и раствор соли имеет кислую среду, т.е рН 7.

Такой же процесс происходит и в случае растворения хлорида аммония NH4C1 в воде:

NH4C1 + Н2О = NH4OH + HC1 или NH4+ + Н2О = NH4OH + H+.

Таким образом, гидролиз соли, образованной слабым основанием и сильной кислотой, идет по катиону слабого основания и реакция среды становится кислой.

Соли, образованные слабым основанием и слабой кислотой.

В случае гидролиза солей, образованных слабым ос­нованием и слабой кислотой, оба иона ОН- и Н+ воды связываются. Образуются слабая кислота и слабое осно­вание. CH3COONH4 -> СН3СОО- + NH4+

СН3СОО- + NH4+ +H2O = CH3COOH + СН3СОО- + NH4+

Гидролиз соли идет одновременно и по катиону, и по ани­ону. В зависимости от константы диссоциации продуктов гидролиза (кислоты и основания) реакция среды растворов таких солей может быть слабокислой, слабощелочной или нейтральной. Например, реакция среды в случае гидролиза ацетата аммония CH3COONH4 — нейтральная, поскольку константы диссоциации СН3СООН и NH4OH равны. В слу­чае же гидролиза соли цианида аммония NH4CN реакция среды слабощелочная.

Таким образом, гидролиз соли, образованной слабым основанием и слабой кислотой, идет одновременно и по катиону, и по аниону. Реакция среды зависит от констант диссоциации продуктов гидролиза.

Соли, образованные сильным основанием и сильной кислотой.

Соли этого типа гидролизу не подвергаются, потому что ка­тионы и анионы этих солей не связываются с ионами Н+ и ОН- воды и в растворе не образуются молекулы слабых электроли­тов. Поскольку связывания ионов воды не происходит, реак­ция среды растворов этих солей остается нейтральной. Рассмо­трим это на примере раствора хлорида натрия. Взаимодейст­вие этой соли с водой можно представить уравнениями

NaCl + Н2О = NaOH + HC1 или Na++ С1- + Н2О = Na+ + ОН- + Н+ + С1-.

Производя сокращения в ионном уравнении, получаем Н2О = Н+ + ОН-. Отсюда видно, что ионы соли не участ­вуют в реакций и среда остается нейтральной.

Следовательно, соли, образованные сильной кислотой и сильным основанием, при растворении в воде гидролизу не подвергаются, а реакция среды остается нейтральной.

Значение растворов электролитов в химии, биологии, геохимии.

Что же дало радиационной химии изучение радиолиза воды и водных растворов? Оно позволило создать общее представление о радиолизе чистых веществ и смесей различных веществ, о видах радиационно-химических реакций в растворах, о путях повышения и понижения выходов радиолитических превращений. Зная механизм радиолиза воды, легче изучать механизмы радиолиза других веществ, так как многие закономерности радиационно-химических превращений имеют общий характер.

Используя полученные данные о механизме радиолиза водных растворов, химики смогли разобраться в радиационно-химических превращениях веществ, используемых для очистки и разделения радиоактивных изотопов и ядерного горючего, и разработать методы, устраняющие опасность появления больших количеств горючего газа при облучении воды в ядерном реакторе.

Другое важное следствие касается радиационной биологии. Организмы - это (конечно, лишь с химической точки зрения) концентрированные водные растворы органических и неорганических веществ. Следовательно, происходящие в организмах процессы в организмах процессы подчиняются общим закономерностям радиолиза водных растворов, знание которых облегчает биологам выяснение механизма биологических нарушений в организме при облучении.

Литература.

1. Робинсон Р., Стокс Р. Растворы электролитов. М., 1963 Измайлов А.А. Электрохимия растворов. М., 1976

2. Термодинамика и строение растворов. Материалы симпозиума "Химия водных систем при высоких температурах и давлениях", Иваново, 1986; March N.H., Тоsi M. P., Coulomb liquids, L.-[a.o.], 1984;

3. Глинка Н.Л. Общая химия. – М.: Химия, 1978. – С. 228-260.

4. Шиманович И.Е., Павлович М.Л., Тикавый В.Ф., Малашко П.М. Общая химия в формулах определениях, схемах. – Мн.: Унiверсiтэцкае, 1996. – С. 121-136.

5. Воробьев В.К., Елисеев С.Ю., Врублевский А.В. Практические и самостоятельные работы по химии. – Мн.: УП «Донарит», 2005. – С. 52-65.