Смекни!
smekni.com

Введение (стр. 1 из 4)

Задание на курсовой проект «Установка для производства ацетилена окислительным пиролизом метана».

Выбрать и обосновать конструкцию реактора окислительного пиролиза метана в ацетилен, технологию очистки реакционного газа и выделения из него ацетилена. Разработать технологическую схему производства 1200 кг/ч ацетилена. Составить материальный баланс производства при конверсии метана 91,5% и селективности по ацетилену 29,6%. Объемное соотношение метана и кислорода в исходном газе 1:0,6. Степень конверсии кислорода 99,0%.

Рассчитать геометрические размеры реакционной камеры реактора при скорости газа 180 м/с, температуре 1450ºС и давлении 0,11 мПа. Время реакции 0,005 с. Коэффициент увеличения объема реакционного газа в результате пиролиза 1,4.

Рассчитать тепловые нагрузки трубчатых печей для нагрева исходных газов.

Графическая часть: технологическая схема и чертеж реактора окислительного пиролиза метана.

Реферат.

В курсовом проекте рассмотрены методы получения ацетилена. Выбран метод получения ацетилена окислительным пиролизом метана. Разработана технологическая схема производства, описана технрлогия очистки реакционного газа и выделения из него ацетилена

Курсовой проект изложен на 30 страницах, содержит 3 рисунка, 3 таблицы.

Использовано 5 литературных источников.

Графическая часть изображена на 2 листах.

Содержание.

Задание

Реферат

Введение

1. Литературный обзор

1.1 Методы получения

1.2 Выбор конструкции реактора

2. Физико-химические основы процесса и веществ. Химическая схема, механизм реакции.

3. Техническая схема

4. Расчетная часть

4.1 Материальный баланс

4.2 Тепловой баланс

4.3 Расчет аппарата

4.4 Расчет трубчатой печи

5. Графическая часть

6. Выводы

7. Библиографический список

Введение.

Промышленность органического синтеза базируется на переработке таких видов ископаемого сырья, как нефть и природный газ. В процессах их физического разделения, термического или каталитического расщепления (крекинг, пиролиз, конверсия и т.д.) получают пять главных групп исходных веществ для синтеза многих тысяч других соединений. Одним из этих веществ и является ацетилен.

В начале XX века ацетилен использовали как горючий газ для освещения (уличные фонари, автомобильные фары, маяки), для сварки и резки металлов и для получения различных сортов сажи. Вместе с тем появление доступного ацетилена дало начало промышленному органическому синтезу, который развивался в первой половине века главным образом на основе ацетилена как углехимический синтез . Первыми промышленными продуктами были тетрахлорэтан, ацетальдегид, уксусная кислота, ацетон, этиловый спирт. Затем были разработаны методы получения таких важнейших мономеров, как изопрен, винилхлорид, винилацетат, акрилонитрил, хлоропрен и акрилаты. Возникновение промышленной химии ацетилена связано с именами М.Г. Кучерова, А.Е. Фаворского, Ф. Клаттэ, Ю. Ньюленда, У. Карозерса, В. Реппе, А.Л. Клебанского и многих других исследователей. За последние годы ацетилен находит все более широкое применение как исходное сырье при производстве различных химических продуктов: мономеров для хлоропренового каучука, некоторых пластических масс (поливинилхлорида, поливинилацетата), химических волокон, а также растворителей (трихлорэтилена, перхлорэтилена), ацетальдегида и др.

Существует два метода производства ацетилена: из карбида кальция и углеводородов. Наиболее старым методом получения ацетилена является карбидный метод, основанный на взаимодействии карбида кальция с водой. Недостатками карбидного метода являются высокий расход электроэнергии (10—11 тыс. кВт -ч на 1 т ацетилена), громоздкость установок и образование обременительных отходов. Тем не менее, этот метод не утратил своего значения и широко используется в России и за рубежом. Это обусловлено высокой чистотой ацетилена, получаемого карбидным методом (99,9 % после очистки его от примесей), и достигнутым за последние годы укрупнением агрегатов.

Окислительный пиролиз является самым распространенным процессом получения ацетилена из углеводородного сырья. Однако применение его наиболее целесообразно в тех случаях, когда можно использовать образующийся синтез-газ (водород и оксид углерода).

Целью курсового проекта является: разработка технологической схемы производства ацетилена, выбор конструкции реактора окислительного пиролиза метана в ацетилен и технологии очистки

1. Литературный обзор.

1.1. Методы получения.

Ацетилен (HC=CH) является простейшим углеводородом, содержащим тройную связь углерод-углерод. Впервые ацетилен был получен Э. Дэви в 1836 году действием воды на ацетиленид (карбид) калия. В 1862 году М. Бертло получил C2H2 в электрической дуге из углерода и водорода. После открытия в 1892 году электротермического метода получения карбида кальция А. Муассаном и Т.Л. Уилсоном появилась возможность промышленного производства ацетилена из CaC2 по реакции.

В связи с высокими затратами электроэнергии на 1 т CaC2 по реакции получили развитие методы производства ацетилена из природного газа и легких углеводородов. Ацетилен образуется в результате пиролиза метана (и легких углеводородов) при температурах ~1500ºС и термоокислительного пиролиза метана по реакции (вместе с этиленом):

Для получения ацетилена используют также электродуговые и плазмохимические методы. Особенно эффективен электрокрекинг жидких углеводородов (метод Н.С. Печуро), позволяющий использовать любые CH-содержащие соединения (отходы химических производств) для получения ацетилена, этилена, водорода и сажи . Хотя затраты энергии на получение 1 т ацетилена из природного газа и нефтяного сырья значительно ниже, чем в карбидном методе, в конце 50-х годов ацетилен не смог конкурировать по стоимости с олефинами (в основном этиленом и пропиленом), получаемыми из относительно дешевой в то время нефти (нефтяных фракций). К тому же в начале 60-х годов уже были разработаны альтернативные методы получения основных мономеров и полупродуктов на основе олефинового сырья. Все это привело к сокращению мирового производства ацетилена и его доли в промышленном синтезе. Однако энергетический кризис в середине 70-х годов привел к росту цен на нефть (в 9-10 раз), природный газ (в 4-5 раз) и уголь (в 2-3 раза), что существенно сказалось на себестоимости олефинов. Эта тенденция показывает, что в перспективе ацетилен может вновь стать важнейшим альтернативным сырьем для органического синтеза наряду с синтез-газом (CO + H2). Серьезное внимание привлекают и гомологи ацетилена: CH3C≡CH и его изомер CH2=C=CH2 (аллен), винилацетилен, диацетилен, которые образуются в процессах окислительного пиролиза метана, электрокрекинга углеводородов и пиролиза нефтяных фракций в производстве этилена и пропилена. На базе этих гомологов может быть построена интересная промышленная химия.

Методы пиролиза углеводородов в ацетилен. По способу подвода тепла для проведения высокоэндотермичной реакции пиролиза углеводородов в ацетилен различают четыре метода.

1. Регенеративный пиролиз в печах с огнеупорной насадкой; ее сначала разогревают топочными газами, а затем через раскаленную насадку пропускают пиролизуемое сырье. Эти периоды чередуются.

2. Электрокрекинг при помощи вольтовой дуги, когда углеводородное сырье подвергают пиролизу в электродуговых печах при напряжении между электродами 1000 В. Затраты электроэнергии доходят до 13000 кВт-ч на 1 т ацетилена, что составляет главный недостаток метода.

3. Гомогенный пиролиз, когда сырье вводят в поток горячего топочного газа, полученного сжиганием метана в кислороде и имеющего температуру 2000°С. Этот метод можно комбинировать с другими процессами пиролиза, если в горячие газы первой ступени пиролиза вводить пары жидких углеводородов, для расщепления которых в ацетилен требуется более низкая температура. Возможно и совместное получение ацетилена и этилена.

4. Окислительный пиролиз, при котором экзотермическая реакция горения углеводородов и эндотермический процесс пиролиза совмещены в одном аппарате.

Все эти способы пиролиза углеводородов на ацетилен применяют в промышленности, но наиболее экономичным из них является окислительный пиролиз. Рассмотрим его подробнее.

При недостатке кислорода и высокой температуре сгорание метана происходит в основном по реакции:

СН4 + О2 —»• СО + Н2 + Н2О, -∆Н°298 = 272,2 кДж/моль.

Она протекает очень быстро, и образование ацетилена (как более медленный процесс) начинается лишь в зоне, практически лишенной кислорода. Там же происходит конверсия оксида углерода СО + Н2О → СО2 + Н2, причем соотношение водорода, оксидов углерода и водяных паров оказывается близким к этому равновесию водяного газа. В практических условиях около 1/3 кислорода расходуется на образование воды, 10—15 % на СО2 и 50—55 % на СО.

Поскольку процесс протекает в автотермическом режиме, для поддержания температуры ~ 1500°С, необходимой для разложения метана, соотношение начальных объемов СН4 и О2 должно составлять 100: (60-:-65), что находится вне пределов взрываемости этих смесей. Опасные концентрации могут возникнуть лишь во время смешения, наводимого при достаточно-высокой скорости и турбулентности потока газов. Само горение метана характеризуется некоторым периодом индукции, длительность которого зависит от температуры и давления. Для метанокислородных смесей указанного выше состава при атмосферном давлении и 600°С период индукции составляет ~ 2 с, что ограничивает время от смешения предварительно подогретых газов до их попадания в горелки, где происходит самовоспламенение смеси. Скорость течения газа в сопле горелки (~ 100 м/с) должна быть выше скорости распространения пламени, чтобы возникшее пламя не распространялось в обратном направлении. В то же время при стабильном режиме горения скорость газа не должна быть выше скорости гашения пламени, чтобы оно не отрывалось от горелки. При турбулентном потоке устойчивому горению способствуют подвод дополнительного количества кислорода в зону горения (так называемый стабилизирующий кислород), а также многосопловые устройства со множеством факелов горения, стабилизующих друг друга.