Смекни!
smekni.com

Тема 5: рекурсивные фильтры (стр. 1 из 3)

ЦИФРОВАЯ ОБРАБОТКА СИГНАЛОВ

Тема 5: РЕКУРСИВНЫЕ ФИЛЬТРЫ

Рекурсия – свойство живой природы. И амеба, и человек принимают решения на основании текущей ситуации и прошлого опыта. Это самое удачное решение Всевышнего при сотворении Мира.

Писецкий. Уральский геофизик, XX в.

Творца и отца Вселенной и найти то трудно. А найдя, нельзя показать его толпе.

Платон. Греческий философ, IV в д.н.э.

Содержание:

Введение.

5.1. Принципы рекурсивной фильтрации. Конструкция РЦФ. Каскадная форма. Параллельная форма. Устранение сдвига фазы.

5.2. Режекторные и селекторные фильтры. Комплексная z-плоскость. Режекторный фильтр постоянной составляющей сигнала. Режекторный фильтр произвольной частоты. Селекторный фильтр.

5.3. Билинейное z-преобразование. Принцип преобразования. Деформация частотной шкалы.

5.4. Типы рекурсивных частотных фильтров. Аппроксимационная задача. Передаточная функция. Виды фильтров.

Литература.

Введение.

Высококачественные частотные нерекурсивные цифровые фильтры (НЦФ) имеют, как правило, большую ширину окна (многочленный оператор фильтра). Чем меньше допустимая ширина переходной зоны частотной характеристики фильтра между полосами пропускания и подавления, тем больше окно фильтра. Альтернативное решение - применение рекурсивных цифровых фильтров (РЦФ), для которых количество коэффициентов фильтра может быть существенно сокращено по сравнению с НЦФ.

Рекурсивные фильтры имеют определенную "память" по значениям предыдущих отсчетов, которая, в пределе, может быть бесконечной. С учетом этого фактора рекурсивные фильтры получили название фильтров с бесконечной импульсной характеристикой (БИХ-фильтров), в отличие от нерекурсивных фильтров, всегда имеющих конечную импульсную характеристику (КИХ-фильтры). Реакция рекурсивного фильтра на сигнал с учетом "памяти" исключает возможность создания фильтров с четным импульсным откликом, и частотные характеристики рекурсивных фильтров всегда являются комплексными. Проектирование рекурсивных частотных фильтров с заданными частотными характеристиками осуществляется через z-область.

Синтез рекурсивных фильтров непосредственно в z-области возможен только для фильтров простого типа (режекторных и селективных) с ограниченным количеством полюсов и нулей (особых точек). В общем случае, процесс проектирования рекурсивного частотного фильтра обычно заключается в задании необходимой передаточной характеристики фильтра в частотной области и ее аппроксимации с определенной точностью какой-либо непрерывной передаточной функцией, с последующим z-преобразованием для перехода в z-область. Первые две операции хорошо отработаны в теории аналоговой фильтрации сигналов, что позволяет использовать для проектирования цифровых фильтров большой справочный материал по аналоговым фильтрам. Последняя операция является специфичной для цифровых фильтров.

Для алгебраического преобразования непрерывной передаточной функции в многочлен по z используется билинейное преобразование, известное в теории комплексных переменных под названием дробно-линейного преобразования.

5.1. Принципы рекурсивной фильтрации.

Конструкция РЦФ отображается в z-образе передаточной функции фильтра в виде отношения двух многочленов:

H(z) = H0+H1z+H2z2+...= B(z)/[1+A(z)], (5.1.1)

где: B(z) = B0+B1z+B2z2+ ... +BNzN, A(z) = A1z+A2z2+ ... +AMzM.

Естественно, что переход на РЦФ имеет смысл только в том случае, если степень многочленов A(z) и B(z) во много раз меньше степени многочлена H(z) прямого z-преобразования импульсной реакции фильтра. При z-образе входных данных Х(z), на выходе РЦФ имеем:

Y(z) = H(z)Х(z) = X(z)B(z)/[1+A(z)],

Y(z)[1+A(z)] = Y(z)+Y(z)A(z) = X(z)B(z),

Y(z) = X(z)B(z)-Y(z)A(z). (5.1.2)

При обратном z-преобразовании выражения (5.1.2) получаем уравнение рекурсивной цифровой фильтрации:

yk =

bn xk-n
am yk-m. (5.1.3)

Рис. 5.1.1. Схема РЦФ.

Рекурсивная фильтрация требует задания начальных условий как по xk, так и по yk при k<0. Схема рекурсивной фильтрации приведена на рис. 5.1.1.

Как следует из выражения (5.1.3), при вычислении значения уk текущей точки используются предыдущие вычисленные значения уk-m, (m>0), что и определяет принцип рекурсии - фильтрации с обратной связью. Другой особенностью РЦФ является их односторонность и физическая реализуемость в реальном масштабе времени. При машинной обработке данных многочлен B(z) передаточной функции фильтра может реализоваться и в двухстороннем варианте.

Одно из важнейших свойств рекурсивных фильтров - возможность получения узких переходных зон при конструировании частотных фильтров, так как функция H(z) фильтра может резко изменяться при приближении к нулю многочлена в знаменателе (5.1.1).

Рекурсивная фильтрация требует более высокой точности вычислений по сравнению с нерекурсивной, т.к. использование предыдущих выходных отсчетов для текущих вычислений может приводить к накапливанию ошибок.

Практическая реализация РЦФ осуществляется в двух вариантах.

Рис. 5.1.2. Каскадная форма. Рис. 5.1.3. Параллельная форма.

Каскадная форма. Находятся корни многочленов А(z),B(z) и производится разложение H(z):

H(z) =

, (5.1.4)

где G - масштабный множитель. Это позволяет применять каскадное построение фильтров, показанное на рис. 5.1.2, в котором:

H(z) = G H1(z) H2(z) ..... HN(z),

Hn(z) = Bn(z)/An(z).

Функции Аn(z) и Bn(z) обычно представляются в виде биквадратных блоков (фильтров второго порядка):

Bn(z) = bn.0 + bn.1 z + bn.2 z2, An(z) = 1 + an.1 z + an.2 z2.

Параллельная форма. Функция H(z) разлагается на элементарные дроби:

H(z) = Ho(z)

Bn(z) / [1+An(z)],

что дает параллельную форму фильтра, показанную на рис. 5.1.3. Параллельная конструкция фильтра применяется много реже каскадной, хотя это может объясняться и тем, что в аналоговых фильтрах, исторически предшествовавших цифровым фильтрам, теоретическая база анализа и синтеза каскадных рекурсивных фильтров получила весьма детальное развитие.

Устранение сдвига фазы. Рекурсивные фильтры являются фазосдвигающими фильтрами. Если требуется обеспечить нулевой фазовый сдвиг, то операция фильтрации производится дважды, в прямом и обратном направлении числовой последовательности массива данных, при этом амплитудно-частотная характеристика (АЧХ) фильтрации будет равна |H(w)|2 фильтра, что необходимо учитывать при конструировании фильтра.

5.2. Режекторные и селекторные фильтры.

Режекторный фильтр (фильтр-пробка) подавляет определенную частоту во входном сигнале. Он может быть спроектирован непосредственно по z-диаграмме.

Комплексная z-плоскость. Простейший фильтр типа НЦФ имеет один нуль на единичной окружности в z-плоскости в точке с частотой, которую необходимо подавить. Так, например, если из входного сигнала требуется исключить постоянную составляющую (нулевая частота), то импульсная реакция фильтра НЦФ имеет вид:

H(z) = 1-z. (5.2.1)

Нуль функции (5.2.1) равен zn1=1. Как можно видеть на рис. 5.2.1, коэффициент передачи сигнала H(w) на любой частоте wi от 0 до wN=p/Dt - частоты Найквиста, определяемый выражением (5.2.1), будет равен длине вектора Vn1, проведенного из нуля функции H(z) - точка n1 на действительной оси, до соответствующей частоты wi - точки z(wi) на единичной окружности. На частоте wi = 0 длина этого вектора равна нулю. Амплитудно-частотная характеристика фильтра, приведенная на рисунке 5.2.2 для передаточной функции (5.2.1) пунктиром, далека от идеальной для фильтр-пробки.

Рис. 5.2.1. Синтез фильтров. Рис. 5.2.2. АЧХ фильтров.

Режекторный фильтр постоянной составляющей сигнала. Сконструируем простейший РЦФ, добавив к оператору (5.2.1) один полюс вне единичной окружности на малом расстоянии от нуля:

Hп(z) = G(1-z)/(1-az), zp= 1/a. (5.2.2)

Допустим, что полюс помещен в точке zp1= 1.01, при этом, а=0,99. Масштабный коэффициент G получим нормировкой H(z) к 1 на частоте Найквиста. Для приведенных условий G=0.995. Отсюда, при Dt=1:

Hп(z) = 0,995(1-z)/(1-0.99z),

yk = 0.995(xk-xk-1)+ 0.99yk-1.

Рис. 5.2.3.

Отображение нуля n1 и полюса р1 на z-плоскости и АЧХ фильтра для исключения постоянной составляющей приведены на рис.5.2.1. Коэффициент передачи сигнала на произвольной частоте wi равен отношению длин векторов Vn1(z) и Vp1(z) соответственно из нуля и полюса до точки z(wi) на единичной окружности и близок к единице для всех частот, за исключением нулевой: