Смекни!
smekni.com

на тему (стр. 2 из 2)

Соединения рубидия. Рубидий образует соединения со всеми обычными анионами. Почти все соли рубидия хорошо растворимы в воде. Как и у калия мало растворимы соли Rb2SiF6, Rb2PtCl6.

Соединения рубидия с кислородом. Рубидий образует многочисленные кислородные соединения, в том числе, оксид Rb2O, пероксид Rb2O2, надпероксид RbO2, озонид RbO3. Все они окрашены, например, Rb2O – ярко-желтый, а RbO2 – темно-коричневый. Надпероксид рубидия образуется при сжигании рубидия на воздухе. Пероксид рубидия получают окислением рубидия, растворенного в безводном аммиаке, безводным пероксидом водорода, а оксид рубидия – нагреванием смеси металлического рубидия и его пероксида. Оксид, пероксид и надпероксид термически устойчивы, они плавятся при температуре около 500° С.

Методом рентгеноструктурного анализа было показано, что соединение состава Rb4O6, полученное в твердом состоянии реакцией Rb2O2 с RbO2 в соотношении 1:2, имеет состав [Rb4(O22–)(O2)2]. При этом двухатомные анионы кислорода разных типов (пероксид и надпероксид) в кубической элементарной ячейке неразличимы даже при –60° С. Это соединение плавится при 461° С.

Озонид рубидия RbО3 образуется при действии озона на безводный порошок RbОН при низкой температуре:

4RbOH + 4O3 = 4RbO3 + 2H2O + O2

Частичное окисление рубидия при низких температурах дает соединение состава Rb6O, которое разлагается выше –7,3° С с образованием блестящих кристаллов медного цвета, имеющих состав Rb9O2. Под действием воды соединение Rb9O2 воспламеняется. При 40,2° С оно плавится с разложением и образованием Rb2O и Rb в соотношении 2:5.

Карбонат рубидия Rb2CO3 плавится при 873° С, хорошо растворим в воде: при 20° С в 100г воды растворяется 450г карбоната рубидия.

В 1921 немецкие химики Франц Фишер (Fischer Franz) (1877–1947) и Ганс Тропш (Tropsch Hans) (1889–1935) нашли, что карбонат рубидия – превосходный компонент катализатора для получения синтетической нефти – синтола (смесь спиртов, альдегидов и кетонов, образующаяся из водяного газа при 410° C и давления 140–150 атм в присутствии специального катализатора).

Карбонат рубидия оказывает положительное действие на процесс полимеризации аминокислот, с его помощью получены синтетические полипептиды с молекулярной массой до 40 000, причем реакция протекает очень быстро.

Гидрид рубидия RbH получают взаимодействием простых веществ при нагревании под давлением 5–10 МПа в присутствии катализатора:

2Rb + H2 = 2RbH

Это соединение плавится при 585° С; разлагается под действием воды.

Галогениды рубидия RbF, RbCl, RbBr, RbI получают при взаимодействии гидроксида или карбоната рубидия с соответствующими галогеноводородными кислотами, при реакции сульфата рубидия с растворимыми галогенидами бария, а также при пропускании сульфата или нитрата рубидия через ионообменную смолу.

Галогениды рубидия хорошо растворимы в воде, хуже – в органических растворителях. Они растворяются в водных растворах галогеноводородных кислот, образуя в растворе гидрогалогениды, устойчивость которых падает от гидродифторида RbHF2 к гидродииодиду RbHI2.

Фторид рубидия входит в состав специальных стекол и композиций для аккумулирования тепла. Он является оптическим материалом, прозрачным в диапазоне 9–16 мкм. Хлорид рубидия служит электролитом в топливных элементах. Его добавляют в специальные чугунные отливки для улучшения их механических свойств, он является компонентом материала катодов электроннолучевых трубок.

У смесей хлоридов рубидия с хлоридами меди, серебра или лития электрическое сопротивление падает с повышением температуры столь резко, что они могут стать весьма удобными термисторами в различных электрических установках, работающих при температуре 150–290° C.

Иодид рубидия используется как компонент люминесцентных материалов для флуоресцирующих экранов, твердых электролитов в химических источниках тока. Соединение RbAg4I5 имеет самую высокую электропроводность из всех известных ионных кристаллов. Его можно использовать в тонкопленочных батареях.

Комплексные соединения. Для рубидия не характерно образование ковалентных связей. Наиболее устойчивыми являются его комплексы с полидентатными лигандами, например с краун-эфирами, где он обычно проявляет координационное число 6.

Другая группа очень эффективных лигандов, которые в последнее время используются для координации катионов щелочных элементов, – макроциклические полидентатные лиганды, которые французский химик-органик Жан Мари Лен назвал криптандами (рис. 1).

Рубидий образует комплекс [Rb(crypt)]CNS.H2O, в котором криптанд N{(CH2CH2O)2CH2CH2}3N (crypt) заключает катион в координационной полиэдр, имеющий форму двухшапочной тригональной призмы (рис. 2).

Озонид рубидия образует устойчивые растворы в органических растворителях (таких как CH2Cl2, тетрагидрофуран или СН3CN), если катион координирован краун-эфирами или криптандами. Медленное выпаривание аммиачных растворов таких комплексов приводит к образованию красных кристаллов. Рентгеноструктурный анализ соединения состава [Rb(18-crown-6)(O3)(NH3)] показал, что координационное число атома рубидия равно 9. Он образует шесть связей с краун-эфиром, две – с ионом O3 и одну – с молекулой аммиака.

Применение изотопов рубидия. Рубидий-87 самопроизвольно испускает электроны (b-излучение) и превращается в изотоп стронция. Около 1% стронция образовалось на Земле именно этим путем, и если определить соотношение изотопов стронция и рубидия с массовым числом 87 в какой-либо горной породе, то можно с большой точностью вычислить ее возраст. Такой метод пригоден применительно к наиболее древним породам и минералам. С его помощью установлено, например, что самые старые скальные породы американского континента возникли 2100 млн лет тому назад.

Радионуклид рубидия-82 с периодом полураспада 76 с используется в диагностике. С его помощью, в частности, оценивают состояние миокарда. Изотоп вводится в кровеносную систему пациента, и кровоток анализируется методом позитронно-эмиссионной томографии (ПЭТ).