Смекни!
smekni.com

Астропроблема Янисъярви (стр. 3 из 4)

При падении метеоритов с размерами, большими критического R0, температура разогрева горных пород растет пропорционально радиусу кратера: DT=gR/c. Доля расплавленного материала растет с ростом R. Когда средний разогрев достигает характерной температуры размягчения горных пород Т=300К, это доля станет подавляющей. Явление массового проплавления происходит при образовании кратеров с размерами, превышающими 30 км на земной поверхности.

Соответственно, масса метеорита для образования кратера с массовым выплавлением пород по порядку величины должна превышать 30000 кг. Такие кратеры- следы редчайших событий. Их размытые следы сохраняются в течение почти всей геологической истории Земли, однако на всей планете пока обнаружено только несколько кратеров с радиусом, большим 30 км.

Начиная примерно с этого размера, формула R~E¼ становится неприменимой, поскольку учёт теплоты плавления делает более сложным баланс энергий метеорита. Кратеры с массовым размягчением пород и внешне выглядит иначе. С ростом размера становится всё более заметной новая особенность- застывшие концентрические волны. Уже у кратеров с радиусом более 1 км есть отчётливое поднятие, а отпечатки катастрофических столкновений с радиусами большими 30 км, имеют 3-4 гребня и впадины. Отчётливо видны не размытые эрозией и не скрытые осадочными породами многокольцевые структуры гигантских кратеров на Луне.

На нашей планете кратеров намного меньше, чем на Луне. При дрейфе континентальных плит поверхность Земли довольно быстро обновляется, а подвижные атмосфера и океан размывают очертания кратеров. Лишь с помощью контрастных фотографий из космоса удалось обнаружить около сотни сильно искаженных временем кольцевых структур диаметром до сотни километров. Оказалось, например, что г. Калуга расположена в древнем кратере диаметром 15 км. Несколько менее уверенно можно утверждать космическое происхождение формации диаметром 440 км на восточном берегу Гудзонова залива (её половина видна на географической карте в очертаниях побережья).

Наибольший отчётливый кратер находится в Аризоне, США. Он имеет диаметр 1265 м и глубину 175 м., а образовался всего 25-30 тысяч лет назад при падении тела массой около 10 млн. тонн.

Даже при образовании малых кратеров часть горной породы и самого метеорита разлетаются в виде расплавленной массы веществ. Такие застывшие в

полёте каменные капли называются тектитами. О величине максимальных скоростей выброса вещества при образовании кратеров можно судить по неожиданным находкам на земле нескольких метеоритов, уверенно отождествлённым с лунными породами. Их лунное происхождение означает, что они были выброшены с Луны при образовании кратера со скоростью, большей второй космической скорости Луны 2,4 км/с, а затем, может быть, через большое время упали на Землю.

При образовании больших кратеров тектиты разлетаются на сотни и тысячи километров, образуя вокруг кратеров тектитные поля. Особенно чётко очерчиваются границы тектитных полей там, где осадочный слой нарастает достаточно медленно. Так, например, от кратера Босумтви (радиус 5 км), образовавшегося чуть более миллиона лет назад в Гане, на берегу Атлантики, простирается в океан тектитное поле в форме овала 2000 х 1000 км. Есть на земле тектитное поле, которое занимает весь Индийский океан! Однако следы его кратера (подводного?) пока не обнаружены.

В настоящее время на Земле известно около 100 структур, которые можно с достаточной достоверностью считать астроблемами[4]. В наиболее полном каталоге, включающем и достоверные, и предполагаемые метеоритные кратеры отражены данные на 230 астроблем[5].

Признаки ударного метаморфизма.

Не смотря на малую изученность процесса ударного метаморфизма в целом, в настоящее время имеются твёрдо установленные специфические признаки, которые позволяют отличать продукты дробления и плавления, образующиеся при соударении метеоритов с земной поверхностью, от горных пород, вырывающихся при иных геологических процессах. Наиболее яркие из них:

* образование конусов разрушения;

* диаплектовые преобразования в минералах;

* появление высокобарных фаз.

Высокобарные фазы.

К высокобарным фазам выявленным в астроблемах, относятся полиморфные модификации кремнезёма (коэсит и стишовит).

Коэсит известен и в других типах пород и типоморфным для метеоритных структур являются не они сами, а определённые парагенезисы, в которых они наблюдаются. Стишовит, напротив, в земляной коре и верхней мантии образовываться не может и сам факт их находки указывает на ударный метаморфизм вмещающих их пород.

Коэсит и стишовит принадлежат к моноклитной и тетрагональной сингониям и отличаются от тригонального кварца более высокой плотностью.


Кварц: плотность = 2,63-2,67 г/см³

SiO2 Коэсит: плотность= 2,85- 3,0 г/см³

Стишовит: плотность= 4,28- 4,35 г/см³

В Республике Карелия, в её юго-западной части тоже есть астроблема - озеро Янисъярви.

Географическое положение озера Янисъярви.

Озеро Большое Янисъярви расположено в юго-западной части Карелии. Географические координаты центра озера -61°59' с.ш., 30°57' в.д. Относится к бассейну Ладожского озера.

Физико-географическая характеристика.

Площадь водной поверхности равна 174,9 км², общая площадь (с островами) составляет 176,4 км². Наибольшая длина-18,2 км, наибольшая ширина -15 км. Число островов -43. Площадь островов -1,5 км². Береговая линия малоизвилиста, её длина по материку 98 км, с островами -123 км. Объём водной массы-2038 млн.м³. Высота над уровнем моря -66,4 м.

Озеро имеет овальную форму несколько вытянутую с севера на юг. Острова расположены вдоль берегов, кроме трех обособленных, находящихся в центральной части Большого Янисъярви. Берега озера преимущественно каменистые, возвышенные, большей частью покрыты лесом, местами встречаются скалистые берега (т.н. «бараньи лбы»).

Водосборная площадь озера =3650 км². В Большое .Янисъярви поступают воды из расположенного севернее озера Малое Янисъярви через короткий и неширокий пролив Луопауссалми с глубинами не более 2 м. Кроме того, в озеро впадают не менее 20 речек и ручьёв, вытекающих из болот и озёр. Из южного конца озера вытекает порожистая река Янисъёки (Ляскелянъёки), впадающая в Ладожское озеро.

Озёрная котловина Б. Янисъярви состоит из двух основных впадин, расположенных в северной и южной частях озера. Впадины разделяются довольно узкими подводным кряжем с находящимися на нём в центральной части водоёма островами: Исо-селькясаари, Пиени-Селькасаари, Хопеасаари. Глубины на кряже менее 10 метров. Впадины вытянуты с С-З на Ю-В. Наиболее глубокая -южная впадина имеет глубины до 50 и 57 метров. В северной впадине глубины достигают 37 м. Кроме того, в озере имеются отдельные понижения дна (до 13 м), а также луды, особенно многочисленные в С-З части водоёма. Подводные склоны большей частью пологие.

Дно озера в прибрежной части главным образом сложено каменистыми грунтами, ниже расположены каменисто-песчаные и песчаные отложения с включениями черной руды и рудными спайками (на каменисто-песчаных грунтах).

Прозрачность воды колеблется пределах от 2,4 до 3 метров (в августе). Цвет воды- тёмно-жёлтый со слабым красноватым оттенком.

Гидрохимический режим озера, в частности по содержанию кислорода, является удовлетворительным. Активная реакция воды слабо кислая ( pH 6,7-6,5)[6].

Возраст Большого Янисъярви, как астроблемы, по K-Ar методу составляет 770±10 млн.лет[7].

Геология этого района хорошо изучена и описана во многих работах, однако, на наш взгляд недостаточно уделено внимания весьма необычным для региона породам, которые при геологосъёмочных работах картировались как породы вулканического образования, без детального изучения. Первая работа, в которой высказана новая точка зрения, принадлежит Пентти Эскола, который отметил, что «изверженные породы Янисъярви имеют состав глинистых осадков» (Escola.1921) и особенности химического состава дацитов Янисъярви являются следствием “ассимиляции больших количеств вмещающих пород, средний состав которых почти точно соответствует составу излившихся пород”.

Используя данные Эскола и сходство пород Янисъярви с импактитами астроблем Лаппаярви (Финляндия), Мин и Деллен (Швеция), М.Р.Денс предположил, что Янисъярви также является астроблемой (Dence. 1971). Эта гипотеза была подтверждена В.Л.Массайтиса (1973) и В.П.Белова (1976,1977), показавшими, что структура Янисъярви имеет все характерные признаки сильно эродированного метеоритного кратера.

ГОРНЫЕ ПОРОДЫ НА ОСТРОВАХ ЯНИСЪЯРВИ

(состав, структуры, минералы)

Условия залегания импактитов

Импактиты обнажаются на мысу Леппяниеми (западная часть озера) и слагают три острова, расположенные в центральной части озера (см. Приложение №2). Импактиты представлены аллогенными брекчиями и тагамитами.

Коренные выходы тагамитов слагают северо-восточную оконечность мыса Леппяниеми и погружаются под воду. Видимая мощность импактитов от уреза воды достигает 3-5м. Хорошо видна столбчатая отдельность, блоки которой имеют поперечное сечение 20-30 см и вертикальное (±5°) падение. Порода содержит небольшое количество обломков вмещающих пород (n %) и 1-2% миндалин. Котакт тагамитов с вмещающими астроблему сланцами заболочен.

Береговая линия о. Хопеасаари представляет собой практически сплошное коренное обнажение, благодаря чему четко устанавливается, что в южной части острова развиты аллогенные брекчии, а остальная его территория сложена тагамитами.