Смекни!
smekni.com

Астрофизика (стр. 10 из 11)

Система ориентации Космического телескопа им. Хаббла построена на основе силовых гироскопов. Грубое наведение с точностью 1¢ будет осуществляется с помощью звездных датчиков и гироскопов – датчиков скорости (положение их осей время от времени должно уточнятся по звездам). Однако расчетное качество изображения, получаемое с помощью 2,4-метрового телескопа на длине волны 0,5 мкм, равно 0,05¢¢, и чтобы использовать это преимущество перед наземными инструментами, требуется обеспечивать стабилизацию телескопа с еще более высокой точностью.

Направление оптической оси телескопа определяется тремя датчиками точного гидирования по изображениям звезд более ярких, чем 1,4m, в периферийной части поля зрения телескопа, разбитой соответственно на 3 сектора. По команде датчики начинают поиск гидировочных звезд, перемещаясь по спирали с центром в расчетном положении. Критериями правильности захвата нужных звезд служат значения их яркости и взаимное расположение. В случае неудачи поиск повторяется, затем переходят к поиску запасных звезд (если таковые имеются). Очевидно, выбор звезд должен производиться заранее, и это очень трудоемкая работа. Более того, точность координат существующих звездных каталогов, как правило, недостаточна, поэтому запуску Космического телескопа им. Хаббла должно было предшествовать фотографирование всего неба на наземных телескопах с большим полем зрения и составление специального каталога гидировочных звезд с точно известными положениями.

Датчики точного гидирования относятся к числу наиболее сложных систем телескопа и включают в себя прецизионные механические узлы, диссекторные телекамеры и даже интерфомометры. Небольшие смешения звезды в поле зрения соответствуют изменению разности фаз световых волн, приходящих на противоположные края зеркала телескопа: изменяются интенсивности интерферирующих пучков, и на выходе датчика возникает сигнал ошибки. При точности гидирования 0,007¢¢ время реакции датчиков точного гидирования должно быть меньше 1 с, и не только потому, что возможны быстрые колебания самого спутника, но и поскольку все звезды смещаются в поле зрения из-за аберрации света вследствие движения спутника по орбите.

К тому же с помощью Космического телескопа им. Хаббла будут наблюдаться и планеты, достаточно быстро перемещаться на фоне звезд. Однако с данной системой наведения этот телескоп не сможет наблюдать земную поверхность. Следует отметить, что неполадки при работе датчиков точного гидирования до последнего момента заставляли сомневаться в их работоспособности.

Как бы не был совершенен орбитальный телескоп, без светоприемной аппаратуры он «слеп». Выбор типа светоприемника для Космического телескопа им. Хаббла оказался не прост. Всерьез обсуждались возможность применения фотопленок, столь долго и успешно служивших астрономам на Земле. К сожалению, в условиях космоса высокочувствительные пленки постепенно темнеют из-за воздействия проникающей радиации, и поэтому их пришлось бы доставлять на Землю не реже одного раза в месяц. Однако частые посещения орбитального телескопа нежелательны как с экономической, так и с технической точки зрения. Отражающее покрытие зеркала (пленка алюминия и фтористого магния) очень чувствительно к газовой атмосфере, окружающей всякий крупный (а тем более маневрирующий) космический объект, поэтому плотная крышка будет открываться лишь после удаления МТКК и вновь закрываться с его приближением.

В 1973 году было решено использовать электронные приемники изображения, лучшим из которых считалась разрабатываемая в Принстонском университете Р. Даниельсоном и его сотрудниками передающая телевизионная трубка секон. Каково же было разочарование его создателей, когда в 1977 г. стало известно о резкой переориентации руководителей программы на твердотельные приемники. Это было смелое решение, ибо технология создания таких приемников насчитывала тогда всего несколько лет, и в астрономии они еще не использовались.

В настоящее время эти ПЗС-приборы – приборы с зарядовой связью – можно увидеть чуть ли не на каждом американском телескопе, и их преимущества хорошо известны: высокий квантовый выход, доходящий до 60%, большое количество чувствительных элементов, малый шум, большой рабочий диапазон изменения яркости объекта и высокая геометрическая стабильность.


3 Использование приведенного материала в учебном процессе.

3.1 Включение материала в темы занятий по физике, естествознанию (рекомендации для учителя).

На весь курс астрономии в программе средней школы отводится мало времени. За это время ученики должны освоить астрономию, сферическую астрономию, астрофизику, космологию и космогонию. Целостный курс астрономии практически распадается на ряд ознакомительных разделов, теряя филосовско-мировозренческое значение.

Одним из выходов видится экономия времени за счет введения различных элементов астрономических знаний в курс других школьных дисциплин в качестве иллюстративного материала. Например, развитие представлений о строении Солнечной системы – в истории; определение географических координат астрономическими методами, основы измерения времени – в географию; законы Кеплера, источники энергии Солнца, определение радиальной составляющей скорости звезд на основе эффекта Доплера – в физику; определение пространственной скорости звезд – в физику и геометрию; определение расстояний до звезд и до тел Солнечной системы – в геометрию; химический состав планет и звезд – в химию и т.п.

Хотя эти элементы будут просто иллюстрировать законы, изучаемые в данных дисциплинах, в курсе астрономии учитель уже сможет опираться на них. Время, требуемое для активизации знаний, значительно меньше чем для изучения.

Например, в 8-м классе в разделе «Геометрическая оптика» изучаются законы отражения и преломления света. В качестве примера применяемых законов в технике рассматривается всего одно устройство – фотоаппарат, приводятся его оптическая схема и принцип работы. Другие оптические приборы, такие, как телескоп и микроскоп, представлены только фотографиями. Однако эти приборы в школе применяются при изучении астрономии и биологии, и учащиеся должны знать их устройство. Оптические схемы микроскопа и телескопа вполне доступны пониманию детей этой возрастной группы, а оптические схемы телескопов – рефлекторов Ньютона и Кассегрена могут стать хорошей иллюстрацией того, как работают законы отражения света. Это удачно используется в интегрированном курсе физики и астрономии.

В 11-м классе вместо объяснения оптических схем телескопов достаточно показать их чертеж, тем самым активизировать знания и сократив время на изучение этого материала примерно на треть урока. Освободившееся время более полезно потратить на рассказ о крупнейших обсерваториях мира, обращая внимание на оптические схемы самых крупных телескопов этих обсерваторий.

Таким образом, включение астрономического материала в виде иллюстраций в другие школьные дисциплины позволяют освободить до одной трети всего времени без ущерба для самого курса астрономии и тех учебных дисциплин, в которых будет применятся иллюстративный астрономический материал.


3.2 Планы-конспекты уроков

План-конспект урока по астрономии (11 класс).

Тема: Оптические телескопы.

Цель: Дать начальные сведения о телескопах.

Тип: Объяснение нового материала.

Элементы усвоения: Типы телескопов.

Приборы и принадлежности: Схемы рисунки.

Методы: фронтальный опрос, рассказ, беседа.

Требования к знаниям и умениям учащихся:

а) знать: 1) Предыдущий материал.

б) уметь: 1) Отвечать на поставленные вопросы.

2) Внимательно слушать новый материал.

Задачи учителя: обучающие – проконтролировать выполнение учащимися домашнего задания. Обеспечить усвоение нового материала.

Развивающие – развить мышление, память, внимание и т.д

Воспитывающие – воспитать умение слушать других, умение настраиваться на учебную работу

Ход урока:

Время

Деятельность учителя

Деятельность ученика

2 минуты

Приветствие. Организационный момент

Приветствие

8-10 минут

Опрос по прошлой теме

Отвечают на вопросы

25 минут

Объяснение нового материала

Слушают объяснения учителя и отвечают на поставленные вопросы.

3 минуты

Подведение итогов

Записывают домашнее задание

Дидактический материал (опрос по прошлой теме).

Объяснение нового материала:

Наблюдения основной источник информации о небесных телах, процессах и явлениях, происходящих во Вселенной. Для проведения наблюдений во многих странах созданы специальный научно-исследовательские учреждения – астрономические обсерватории. У нас, их несколько десятков: главная астрономическая обсерватория Российской Академии наук – Пулковская (в Санкт-Петербурге), Специальная астрофизическая обсерватория (на Северном Кавказе), Государственный астрономический институт им. П.К. Штернберга (в Москве) и др.