Смекни!
smekni.com

Изучение Галактик (стр. 1 из 2)

П В П Ш № 2

Реферат по астрономии

Тема: Изучение Галактик

Работу выполнила: Насретдинова Елена

Принял преподаватель: Евтодиев И.Г.

СОДЕРЖАНИЕ

1. Вступление

2. Великий спор

3. Оба участника спора соглашались в том, что

4. Классификация Хаббла

5. Литература

Как это ни странно, но история внегалактической астрономии начинается с ловли комет. В 1781 году известный ловец комет, астроном Парижской обсерватории Шарль Мессье решил составить каталог туманностей, чтобы впредь не принимать их за кометы. К тому времени на его «личном счету» уже было 8 вновь открытых комет, вообще же за свою долгую жизнь он наблюдал 36 комет. В каталог Мессье вошло 103 объекта, которые и сейчас принято обозначать номерами его каталога с прибавлением буквы « М ».Так, М 1-это уже известная нам Крабовидная туманность, М 42 – туманность Ориона и т.д.

Но в каталоге Мессье наряду с «настоящими» туманностями (Крабовидная, в Орионе и др.) оказались и тесные звездные скопления. Так М 45 – это Плеяды, М 44 – Ясли, М 13 – шаровое звездное скопление в Геркулесе. Всего в каталоге Мессье оказалось 20 рассеянных и 24 шаровых звездных скопления.

Была в каталоге Мессье и еще одна крупная групп объектов, которые не были ни туманностями, ни звездными скоплениями. К ним принадлежали туманности в Андромеде (М 31), Треугольнике (М 33), Гончих Псах (М 51) и еще 22 объекта. Это были галактики, далекие звездные системы, подобные нашему Млечному Пути.

Но во времена Мессье об этом никто даже ни догадывался и самого термина «галактика» ни существовало.

Туманными пятнами вскоре заинтересовался другой астроном – Вильям Гершель. В отличие от Мессье, Гершель рассматривал эти объекты не как источник путаницы при наблюдениях комет, а как небесные тела, подлежащие пристальному изучению.

Наблюдая туманности и звездные скопления, Гершель составил несколько их каталогов, в которые вошло 2500 объектов, опубликовал сводный «Генеральный каталог» (GC), включив в него 5079 объектов.

Вильям Гершель еще в начале своих наблюдений заметил, что часть «туманных пятен» разлагается на звезды, а другая часть – нет. Но тогда он полагал, что просто это более далекие звездные скопления и для того, разложить их на звезды, нужны телескопы большей силы.

Гершель одним из первых понял, что Млечный Путь представляет собой гигантскую звездную систему, «островную вселенную». Применив метод «черпков», т.е. подсчетов числа звезд различной звездной величины в отдельных избранных участках, он попробовал представить себе строение нашей Галактики. Вместе с тем он правильно полагал, что существуют и другие «островные вселенные», похожие на млечный путь, и что все вместе они образуют некую гигантскую сверхсистему. Но четких признаков, которые позволили бы отличать «островные вселенные» от «истинных» туманностей и звездных скоплений, входящих в состав нашей Галактики, в распоряжении Гершеля не было, и быть не могло. Они появились позже, уже в 60-е годы XIX века.

С появлением совершенных телескопов и применением фотографии была установлена физическая природа звездных систем – галактик. Впервые спектр Туманности Андромеды был сфотографирован в 1888 г. английским астрономом У. Хёггинсом (1824 - 1910). Этот спектр оказался похожим на спектры желтых звезд. В 1911 г. немецкий астроном М. Вольф обнаружил в спектре Андромеды 45 линий поглощения, в том числе водородную серию Бальмера и основные линии ионизованного кальция. Все это подтверждало звездный состав галактики Андромеды. Но лишь в 1923 – 1924 гг. Э. Хаббл (1889 - 1953) по фотографиям, полученным им на новом телескопе-рефлекторе диаметром 2,5 м (США, обсерватория Маунт-Вильсон), окончательно установил, что спиральные ветви галактики Андромеды состоят из звезд, среди которых оказалось много гигантов, в частности цефеид. В 1944 г. на том же телескопе В. Бааде (1893 - 1960) получил уникальные фотографии, четко показывающие, что центральное сгущение этой галактики тоже состоит из звезд. По многочисленным фотографиям последующих лет в галактике Андромеды были обнаружены рассеянные и шаровые звездные скопления, группы горячих гигантских звезд, темные пылевые и светлые газовые туманности – словом, такие же объекты, какие входят в состав нашей Галактики.

Фотографии других сравнительно близких к нам галактик, в частности М 33 в созвездии Треугольника и М 51 в созвездии Гончих Псов, также показывают их спиральную звездную структуру с центральным сгущением. В экваториальном поясе многих звездных систем, видимых «с ребра», имеются мощные пылевые облака. На фотографиях подавляющего большинства галактик звезд не видно, но спектры полностью подтверждают их звездный состав. Так окончательно установлено, что во Вселенной, помимо Галактики, существует множество других аналогичных звездных систем.

«ВЕЛИКИЙ СПОР»

Открытие зависимости «период-светимость» у цефеид в 1912 – 1913 гг. позволило определить масштабы нашего Млечного Пути, расстояния и размеры шаровых звездных скоплений и, наконец, расстояние до Магелановых Облаков – двух хорошо заметных невооруженным глазом туманных пятен, находящихся в южном полушарии неба. Но Магелановы Облака давно уже были разрешены на звезды, и именно в Малом Мпгелановом Облаке находились те 25 цефеид, по которым мисс Ливитт впервые вывела зависимость «период - светимость». В 1916 – 1918 гг. Х. Шепли с помощью этой зависимости, уточнив нуль-пункт, определил, что расстояние до Магелановых Облаков составляет около 100000 световых лет. Это означало, что Магелановы Облака находятся за пределами нашей Галактики, поскольку ее размеры оценивались, например, Г. Зеелигером в 23000 световых лет. В те годы, однако, не было полной ясности в этом вопросе. Зеелигер получил свою оценку размеров Галактики по методу, близкому к методу «черпков », применявшемуся еще В. Гершелем, а именно путем подсчетов числа звезд до данной звездной величины в сочетании с определением их собственных движений. Если считать, что в среднем скорости у всех звезд одинаковы и не зависят от расстояния до них, то по величине угловых собственных движений звезд можно определить их расстояние.

Х. Шепли дал совсем другую оценку размеров Галактики: 300000 световых лет. Он считал, что шаровые звездные скопления находятся внутри нашей Галактики, а расстояния до них, определенные по цефеидам и по звездным величинам самых ярких звезд скопления, достигали 220000 световых лет.

Против оценок этих расстояний выступил астроном Ликской обсерватории Х. Кертис. Он считал, что все расстояния завышены Шепли раз в десять. Кертис поддерживал оценку размеров Галактики, вытекающую из звездных подсчетов, и считал, что шаровые звездные скопления гораздо ближе к нам, чем находит Шепли.

Поскольку вопрос о масштабах Галактики и окружающей ее части Вселенной представлял громадный интерес, Национальная академия наук США в Вашингтоне организовала 26 апреля 1920 года специальную дискуссию между Шепли и Кертисом, получившую название «Великого Спора».

Этот спор касался не только масштабов Галактики, но и природы спиральных туманностей. И разным оказался итог дискуссии по этим двум проблемам.

Оба участника спора соглашались в том, что:

А) звезды в скоплениях и в отдаленных частях Млечного Пути ничем особенным не отличаются от звезд в окрестностях Солнца (в этом они были правы);

Б) относительные расстояния до шаровых скоплений, определенные Шепли, правильны (и это было верно);

В) межзвездного поглощения света не существует (а вот это было серьезной ошибкой).

Шепли опирался на данные по цефеидам и ярким гигантам. Кертис критиковал эти данные и считал, что красные и желтые звезды в скоплениях – карлики, схожие с Солнцем (тогда как на самом деле это были гиганты).

Детали «великого спора» характерные для оценки позиции его участников данные для расстояния до шарового звездного скопления М 13 в Геркулесе (в световых годах):

по Шепли 36000 по Кертису (первоначальное) 3600

по Кертису (пересмотренное) 8000

по современным данным 25000

Итак, мы видим, что здесь Шепли оказался ближе к истине, чем Кертис. Некоторые завышения его оценки связано с пренебрежением межзвездным поглощением света, из-за которого все далекие звезды казались слабее (а потому относились Шепли на более далекие расстояния).

Но в другом вопросе именно Кертис был прав, а Шепли ошибался. Это был вопрос о природе спиральных туманностей. Кертис считал, что это «островные вселенные», подобные нашей Галактике, тогда как Шепли полагал, что это «истинно туманные объекты».

Первые попытки определить расстояние до самой яркой и, очевидно, ближайший из них – туманности Андромеды – давали странные и противоречивые результаты. Шведский астроном К. Болин в 1907 г. определил из большой серии измерений параллакс туманности Андромеды и получил значение 0”,17, чему соответствовало расстояние в 19 световых лет. Выходило, что эта туманность – совсем рядом! Но спустя четыре года американский физик Ф. Вери сделал оценку расстояния, сравнив блеск Новой S Андромеды, вспыхнувший в 1885 г. (см. стр. 138), и Новой Персея, и получил 1600 световых лет. Туманность, по Вери, была не близко, но все же в пределах Млечного Пути. Вери не знал, что S Андромеды была сверхновой, тогда как звезда в Персее – обычной новой. Лишь в 1917 г. сотрудник обсерватории Маунт Вилсон Дж. Ричи обнаружил несколько обычных новых в туманности Андромеды и в ряде других спиральных туманностей. Этим заинтересовался Кертис, вскоре также нашедший несколько новых в спиралях по пластинкам Ликской обсерватории. В 1918 г. он определил по четырем новым расстояние до туманности Андромеды в 500 000 световых лет. Это означало, что она (а значит, и все другие спиральные туманности) – внегалактический объект.