Смекни!
smekni.com

Особенности интерпретации данных газового каротажа при исследовании глубоких скважин (стр. 1 из 2)

П.П. Муравьев, Ш.Т. Мусяков (ОАО "Башнефтегеофизика")

Основными задачами газового каротажа при исследовании поисковых и разведочных скважин являются:

выявление в разрезе бурящейся скважины перспективных нефтенасыщенных пластов-коллекторов;

оценка характера насыщенности пласта-коллектора;

выделение зон аномально высоких поровых давлений;

предупреждение внезапных выбросов пластового флюида.

При решении второй и третьей из перечисленных задач важнейшим информативным параметром является относительный состав газа. В настоящее время при газовом каротаже измеряются концентрации углеводородных газов СН4, C2H6, C3H8, C4H10, C5H12, C6H14 в газовоздушной смеси, извлекаемой желобным дегазатором из промывочной жидкости (ПЖ), и в газовой смеси, выделяющейся при глубокой дегазации проб ПЖ.

Относительный состав газа определяется расчетным путем, как относительные содержания компонентов углеводородных газов (УВГ) от метана до гексана включительно, когда суммарное содержание УВГ принимается за 100%.

При интерпретации данных газового каротажа с использованием информации об относительных содержаниях компонентов УВГ необходимо учитывать, что относительный состав извлеченного при дегазации ПЖ газа в большинстве случаев не соответствует относительному составу УВГ вскрытого пласта, претерпевая изменения в процессе его транспортировки от забоя скважины до хроматографа в станции ГТИ.

Рассмотрим более подробно изменения состава УВГ на забое скважины при вскрытии пласта-коллектора. В данной статье не рассматриваются вопросы инфильтрации промывочной жидкости под буровым долотом, так как они подробно рассмотрены в работе О. А. Черемисинова [1].

Фильтрация пластового флюида в процессе вскрытия пласта подчинятся закону Дарси:

,

где:

- коэффициент проницаемости,
- вектор градиента давления,
- вязкость пластового флюида.

На забое глубоких скважин наблюдаются высокие температура (до 100 - 150 °С) и давление (до 80 - 100 МПа) [2], что способствует переходу углеводородов в газообразное и парообразное состояния. В табл. 1 даны значения критических температур и давлений, а также молекулярной массы и температуры кипения для ряда углеводородных газов.

Таблица 1. Характеристики углеводородных газов

Компонент Молекулярная масса Критическая температура, °С Критическое давление, МПа Температура кипения при давлении 0,1 МПа, °С
Метан 16,04 -95,5 4,58 -160,0
Этан 30,07 +35,0 4,80 -84,1
Пропан 44,09 +97,0 4,20 -44,1
Бутан 58,12 +153,0 3,75 +0,3
Пентан 72,15 +197,2 3,33 +36,4
Гексан 86,17 +234,5 2,99 +69,0
Гептан 100,20 +266,8 2,70 +98,4
Октан 114,22 +296,4 2,46 +125,5

Исходя из значений критических температур

и давлений
для различных газов, состава газа и реальных термобарических условий на забое глубоких скважин (
> 100 °С и
> 50 МПа), можно предположить, что метан, этан, пропан будут находиться в газообразном, а бутан, пентан, гексан, гептан и октан - в парообразном состояниях. Высокая растворимость углеводородных газов и тяжелых углеводородов в воде при больших давлениях приводит к их значительному насыщению углеводородами, особенно тяжелыми.

Наличие большого количества углеводородов в газообразном и парообразном состояния вносят специфические особенности в физическое состояние пластового флюида. Если объем газовой фазы значительно превышает объем нефти, то при давлении более 25 МПа и температуре более 100 °С наступает обратная растворимость (ретроградное испарение) - жидкие углеводороды начинают растворяться в газе, и при определенных давлении и температуре смесь флюидов полностью превращается в газ. При понижении давления из смеси начинает выпадать конденсат в виде жидких углеводородов (обратная конденсация) [З].

Большое количество газа в пластовом флюиде уменьшает его плотность, вязкость и поверхностное натяжение.

На рис. 1 показаны кривые изменения динамической вязкости УВГ в зависимости от давления. Видно, что с увеличением давления вязкость тяжелых УВГ (пропан - гексан) резко возрастает, вязкость метана и этана растет менее значительно. С ростом температуры от 50 до 100 °С вязкость метана - гексана также возрастает, но незначительно [4].

Рис. 1. Изменение динамической вязкости УВГ от давления

Вследствие низкой вязкости пластового флюида и его насыщения газом он приобретает высокие миграционные свойства. В частности, при вскрытии коллектора с репрессией на пласт пластовый флюид легко оттесняется фильтратом бурового раствора по порам и трещинам в глубь пласта. Лишь незначительная часть пластового флюида остается в микропорах и микро трещинах и при разрушении породы долотом переходит в буровой раствор. Основная же часть газа поступает в буровой раствор из изолированных пор, каверн и трещин. Анализ относительного состава УВГ открытых и закрытых пор показывает (табл. 2), что в составе последних преобладают тяжелые углеводороды, причем эта разница становится более существенной для глубоко залегающих отложений. Результаты, полученные другими исследователями [1], также подтверждают указанную закономерность. Общее содержание УВГ в закрытых порах изменяется от 5 - 8 до 120 - 150 см3/дм3. Выявлено, что в продуктивных карбонатных отложениях газосодержание закрытых пор увеличивается.

Таблица 2. Состав углеводородного газа открытых и закрытых пор

Район Характер насыщенияпласта Поры Состав газа, % отн.
CH4 C2H6 C3H8 C4H10 C5H12 C6H14
Татария Нефть откр 7,00 3,2 35,10 22,40 20,30 6,00
закр 6,00 8,40 32,10 23,50 21,70 7,60
Башкирия Нефть откр 23,10 17,8 20,70 17,70 15,90 4,80
закр 17,70 15,40 20,90 22,60 17,30 6,10
Вода откр 28,20 16,8 20,00 14,80 15,70 4,50
закр 22,80 15,30 20,10 16,90 18,10 6,80
СаратовскоеПоволжье Нефть откр 53,20 19,6 11,30 8,06 5,27 2,57
закр 35,20 18,30 15,42 13,32 12,44 5,32
Газ откр 57,53 14,7 10,02 9,12 5,97 2,66
закр 47,80 12,80 13,30 11,55 10,70 3,85
Вода откр 41,80 21,9 13,30 3,33 8,70 10,97
закр 22,96 17,82 18,36 17,80 15,83 7,23
Коми Газовый конденсат откр 56,12 12,70 12,78 8,30 7,30 2,80
закр 40,30 16,22 16,38 11,79 11,21 4,10

Различие в газах открытых и закрытых пор объясняется тем, что тяжелые углеводороды обладают по сравнению с метаном значительно более высокой сорбционной способностью по отношению к породам, детритному и рассеянному органическому веществу, благодаря чему они могут частично концентрироваться в породах и особенно в закрытых порах [5].

Следовательно, если вскрытие пласта происходит с превышением забойного давления над пластовым, буровой раствор должен обогащаться преимущественно газом из закрытых пор, в составе которого преобладают тяжелые УВГ. Вследствие этого относительный состав УВГ в буровом растворе не может характеризовать фактический состав газа в пласте. По мере вскрытия пласта происходят оттеснение пластового флюида и закупорка призабойной зоны пласта. Скорость оттеснения флюида и глубина проникновения фильтрата бурового раствора в пласт будут зависеть от многих факторов -величины репрессии на пласт, вязкости пластового флюида, структуры порового пространства, проницаемости коллектора и т. д. Оттесненный газ после вскрытия пласта вследствие большой разницы в концентрациях УВГ в пласте и в скважине начинает диффундировать через стенки скважины.

Повышенной диффузионной способностью характеризуются легкие газообразные компоненты. Диффузионная проницаемость пород зависит от их литологического и минерального состава, пористости, природы диффундирующих компонентов, сорбционных свойств, растворимости пластового флюида и пр. С ростом молекулярной массы УВГ коэффициент диффузии снижается. Для водонасыщенных глин коэффициент диффузии для УВГ колеблется в пределах 10-10 ÷ 10-11 м2/с, с ростом влажности пород он резко снижается [6], что иллюстрируется табл. 3. Из табл. видно, что коэффициент диффузии для метана значительно выше коэффициента диффузии для тяжелых УВГ. Повышение плотности пород приводит к снижению коэффициента диффузии, однако при наличии трещин и примесей инородного материала коэффициент диффузии значительно возрастает.

Таблица 3. Коэффициент диффузии газообразных углеводородов для пород различной влажности