Смекни!
smekni.com

Использование корреляционных связей в комплексе с ядерно-геофизическими методами (стр. 1 из 6)

(ягфм) каротажа при опробовании сред сложного состава

Красноперов Владимир Анатольевич, доктор геол.-мин. наук, профессор, академик РАЕН, Кульдеев Ержан Итеменович, инженер, Университет Сулеймана Демиреля, г. Алматы, Казахстан

Определенные преимущества ЯГФМ каротажа по сравнению с керновым опробованием повышают возможности комплексного исследования руд и вмещающих пород. В случаях, когда необходимо оценить содержания элементов, не обладающих благоприятными ядерными свойствами, используются эмпирические зависимости между химическими или минеральными компонентами изучаемых геологических сред, которые по своей природе могут быть кристаллохимическими и парагенетическими. Первые дают устойчивую, практически функциональную зависимость химических элементов в соединении (минерале), вторые объединяют минералы, образующиеся в одних геологических условиях, дают менее устойчивую корреляционную связь, зависящую от размеров элементов опробования, местоположения изучаемого участка и т.д. [6-10, 12, 13, 15, 16, 18-20, 21-27, 30- 33, 36, 38-40, 45, 47, 49, 51, 60, 261, 65, 67-69, 71, 72, 77, 84]. Наиболее устойчивыми из парагенетических являются связи минеральных компонент в закрытых системах, характеризующихся постоянством их суммы. К таким системам относятся, в частности кварц-карбонат-флюоритовые руды, пластовые фосфориты, фосфато-карбонаты, фосфато-кремнистые породы, карбонатно-терригенные образования.

Более чем вековая история развития учения о парагенезисе свидетельствует о неослабевающем интересе исследователей к этому разделу геологических знаний, оцененному В.И. Вернадским, как одно из крупнейших обобщений прошлого века, сыгравшего принципиально важную роль в создании основ генетической минералогии и современной геохимии. Отражая одну из кардинальных закономерностей природы - устойчивое сонахождение определенных минералов и химических элементов, парагенезис сейчас широко используется как мощное средство теоретического познания многокомпонентных минералогических и геохимических систем. Парагенетический метод в процессе изучения сложных природных объектов включает следующие этапы геологических исследований [77]:

1) постановку задачи с формированием общей цели исследований и выбором средств исследования;

2) определение компонентного состава геологического объекта, его описание как системы, выделение парагенезисов минералов и элементов;

3) генетическое истолкование результатов, конструирование модели объекта, формирование гипотез;

4) испытания моделей в реальных ситуациях, проверка гипотез практикой, превращение их в рабочую теорию для прогнозирования новых свойств объекта исследования.

Во многочисленных публикациях, посвященных парагенезису, чаще всего исследуются закономерные сообщества минералов и значительно реже- химических элементов. Это вполне закономерно, т.к. в породах химические элементы представлены в виде соединений-минералов. И практически один элемент может присутствовать в нескольких минералах, имеющих разные условия образования и составляющих изучаемую геологическую природную среду-породу. Поэтому в большинстве случаев целесообразно искать связи в геологических системах между минеральными компонентами, а не между элементами.

В работе Б.И. Смирнова [77] парагенезис рассмотрен как системное явление. Необходимость системного подхода в геологии обосновывалась в работах Ю.А. Косыгина, В.А. Соловьева, П.Ф. Иванкина, И.П. Шарапова, Р.А. Жукова, В.И. Оноприенко, Б.И. Смирнова. Характер системообразующих связей определяется, если рассматривать систему с наиболее общих позиций как взаимодействие элементов между собой, так и взаимодействие системы и среды. Единство компонентного состава и структурная однородность определяют целостность системы. Выбор методов обнаружения и описания связей между системными элементами существенно облегчается, если принять следующие определения системы: "...система - это множество объектов, на котором реализуется отношение с заранее заданным свойством" [77].

Формальная запись определения системы имеет вид:

S = def [R(m)] × P

где S-символ системы, def - дефиниция (определение); m- системообразующие элементы, R - некоторые фиксированное свойства, регулирующее выбор систематообразующего отношения R и играющее в связи с этим роль системной концепции. Процедуру конструирования системы можно представить в вид:

P® R ® {m} = S

Таким образом, чтобы определить систему, вначале следует задать некоторое свойство Р, исходя из смысла решаемой задачи; затем на его основе найти класс отношений, обладающих этим свойством - R и перечислить множество элементов {m}, на которых реализованы отношения

R : {m} = S.

Выбор Р, вообще говоря произволен. Поэтому на одном и том же множестве, можно построить целый ряд различающихся систем:

{Р1S1; Р2S2; Р3S3; и тд. }

Множество вещественных компонентов {m} - субстрат системы, R - ее структура, Р- базовое свойство, системная концепция. Выбор Р имеет определяющее значение для успеха практической реализации системных исследований.

Основным видом геохимической информации являются сведения о количестве атомов того или иного химического элемента в некотором заданном объеме геологического объекта. Существуют различные формы фиксаций этих сведений, наиболее распространено представление в виде весовых процентов. Обычно объем геохимической пробы исчезающее мал в сравнении с размерами геологического объекта, что позволяет рассматривать ее как точку в этом объекте.

Следуя [77], обозначим символом J множество точек, в которых произведены измерения концентрации химических элементов (J {i}), символом А - множество химических элементов, обнаруженных в исследуемом геохимическом объекте

А = {aR: R=1,… Р}

Содержание R -го элемента в i-й точке объекта обозначим как yir; совокупность значений yir, относящихся к определенному элементу, образует множество

УR = { yir : i Î J}

Существует также более широкое множество:

У = {УR: R=1,2, … Р}

Таким образом, содержания элементов являются единственным объективно фиксируемым результатом эволюции любого геохимического объекта.

Значение концентрации R -го элемента в i -й точке объекта зависит как от величины текущих воздействий (xi), так и от состояния системы (Сi). Множество C= {Ci : i Î J} может трактоваться как совокупность внутренних факторов; в геохимических системах такими факторами являются состояния химических элементов, которые регулируются свойствами их атомов. Множество Х= {xi : i Î J} объединяет внешние факторы, действие которых связано с изменением условий среды.

Поскольку оценить степень участия каждого из множеств X и С в формировании yir затруднительно, то обычно оперируют объединенным множеством факторов F:

f = cux, f ={Fg.: g =1,2,3,…m}; Fg = {fgi : i Î J},

где Fg - множество значений некоторого природного фактора, управляющего поведением геохимического объекта (температура, давление, водородный показатель и т.п.), fgi - значения g-го фактора в i-той точке объекта, в принципе {fgi} с алгебраической точки зрения может рассматриваться как множество действительных чисел. Можно полагать, что концентрации элементов, различающихся по химическим и физическим свойствам, формируются под воздействием различных факторов. Подмножество Fs, объединяющее факторы, общие для некоторой группы элементов, выступает в качестве регулятора и если его вклад в F достаточно велик, то соответствующая группа элементов приобретает черты системного объекта. Непосредственно оценить количество и вес факторов в Fs практически невозможно, но в то же время, чем больше вклад факторов Fs в эволюцию геохимического объекта, тем выше степень общности геологической истории составляющих ее элементов. В свою очередь поведение химических элементов в геологических процессах во многом регулируется особенностями строения их атомов. Так формируется группы элементов, управляемых одними и теми же факторами, что фиксируется, в частности, сопряженностью их концентраций. Это позволяет рассматривать совокупность подобных элементов как геохимические системы. Понятие геохимической системы в соответствии с [32, 77] формируется как: “… группа сонаходящихся в конкретном геологическом объекте химических элементов, характеризующихся сопряженностью их концентраций”

В символах системного анализа это определение можно записать как:

АS = def [R(аR)] × P

где АS – геохимическая система.

Применительно к геохимическим системам свойство Р, отражающее особый характер взаимодействия системных элементов с внешними и внутренними факторами, сформулировано как сопряженность концентраций химических элементов.

Для объединения элементов в парагенетическую ассоциацию требования сопряженности явно недостаточно, необходимо еще одно дополнительное условие, а именно однонаправленность изменения содержаний ассоциирующих химических элементов при тех или иных изменениях параметров среды. Именно при одновременном выполнении этих требований можно ожидать устойчивого появления одних и тех же наборов парагенетический связанных элементов в сходных геохимических обстановках. Элементы, реакция которых на одни и те же воздействия среды противоположна по знаку, характеризуются разнонаправленным изменением их концентраций и образуют "запрещенные" парагенезисы, состоящие из элементов антагонистов. Итак в соответствии с [77] "под парагенетической ассоциацией будем понимать группу сонаходящихся в конкретном геологическом объекте элементов, сходно (как по интенсивности, так и по знаку) реагирующих на изменения параметров среды и характеризующихся в связи с этим сопряженностью и однонаправленностью изменения их содержаний в пространстве объекта".

Используя терминологию теории определений, можно отметить,

что геохимическая система и парагенетическая ассоциация химических элементов соотносятся как родовое и видовое понятия. Это позволяет рассматривать парагенетическую ассоциацию как особым образом организованную геохимическую систему. Исходя из вышеизложенного, парагенетическая ассоциация может быть представлена в виде системы: