регистрация /  вход

Кодирование информации 2 (стр. 1 из 2)

Оглавление

Кодирование информации. 3

Кодирование текстовой информации. 5

Кодирование графической информации. 7

Кодирование звуковой информации. 10

Использованная литература:13


Кодирование информации

Составляя информационную модель объекта или явления, мы должны договориться о том, как понимать те или иные обозначения. То есть договориться о виде представления информации.

Информационная модель – целенаправленно отобранная информация об объекте или процессе.

Человек выражает свои мысли в виде предложений, составленных из слов. Они являются алфавитным представлением информации.

Основу любого языка составляет алфавит - конечный набор различных знаков (символов) любой природы, из которых складывается сообщение на данном языке.

Но вот беда, одна и та же запись может нести разную смысловую нагрузку.

Например, набор цифр 271009 может обозначать:

  • массу объекта;
  • длину объекта;
  • расстояние между объектами;
  • номер телефона;
  • запись даты 27 октября 2009 года.

Чтобы избежать путаницы, следует договориться о правилах представления информации. Такое правило часто называют кодом.

Код - набор условных обозначений для представления информации.

Кодирование - процесс представления информации в виде кода (представление символов одного алфавита символами другого; переход от одной формы представления информации к другой, более удобной для хранения, передачи или обработки).

Обратное преобразование называется декодированием.

Для общения друг с другом мы используем код - русский язык.

При разговоре этот код передается звуками, при письме - буквами.

Водитель передает сигнал с помощью гудка или миганием фар.

Вы встречаетесь с кодированием информации при переходе дороги в виде сигналов светофора.

Таким образом, кодирование сводиться к использованию совокупности символов по строго определенным правилам.

Способ кодирования зависит от цели, ради которой оно осуществляется:

  • сокращение записи;
  • засекречивание (шифровка) информации;
  • удобство обработки;
  • и т. п.

Существуют три основных способа кодирования текста:

  • графический – с помощью специальных рисунков или значков;
  • числовой – с помощью чисел;
  • символьный – с помощью символов того же алфавита, что и исходный текст.

Наиболее значимым для развития техники оказался способ представления информации с помощью кода, состоящего всего из двух символов: 0 и 1.

Для удобства использования такого алфавита договорились называть любой из его знаков «бит» (от английского «bi nary digit » -двоичный знак).

Одним битом могут быть выражены два понятия: 0 или 1 (да или нет, черное или белое, истина или ложь и т.п.).

Двоичные числа очень удобно хранить и передавать с помощью электронных устройств.

Например, 1 и 0 могут соответствовать намагниченным и ненамагниченным участкам диска; нулевому и ненулевому напряжению; наличию и отсутствию тока в цепи и т.п.

Поэтому данные в компьютере на физическом уровне хранятся, обрабатываются и передаются именно в двоичном коде.

Последовательностью битов можно закодировать текст, изображение, звук или какую-либо другую информацию.

Такой метод представления информации называется двоичным кодированием .

Таким образом, двоичный код является универсальным средством кодирования информации.

Кодирование текстовой информации

Если каждому символу алфавита сопоставить определенное целое число (например, порядковый номер), то с помощью двоичного кода можно кодировать и текстовую информацию. Для хранения двоичного кода одного символа выделен 1 байт = 8 бит.

Учитывая, что каждый бит принимает значение 0 или 1, количество их возможных сочетаний в байте равно

Значит, с помощью 1 байта можно получить 256 разных двоичных кодовых комбинаций и отобразить с их помощью 256 различных символов.

Такое количество символов вполне достаточно для представления текстовой информации, включая прописные и заглавные буквы русского и латинского алфавита, цифры, знаки, графические символы и т.д.

Кодирование заключается в том, что каждому символу ставится в соответствие уникальный десятичный код от 0 до 255 или соответствующий ему двоичный код от 00000000 до 11111111.

Таким образом, человек различает символы по их начертанию, а компьютер - по их коду.

Важно, что присвоение символу конкретного кода - это вопрос соглашения, которое фиксируется в кодовой таблице.

Кодирование текстовой информации с помощью байтов опирается на несколько различных стандартов, но первоосновой для всех стал стандарт ASCII (American Standart Code for Information Interchange), разработанный в США в Национальном институте ANSI (American National Standarts Institute).

В системе ASCII закреплены две таблицы кодирования - базовая и расширенная.

Базовая таблица закрепляет значения кодов от 0 до 127, а расширенная относится к символам с номерами от 128 до 255.

Первые 33 кода (с 0 до 32) соответствуют не символам, а операциям (перевод строки, ввод пробела и т. д.).

Коды с 33 по 127 являются интернациональными и соответствуют символам латинского алфавита, цифрам, знакам арифметических операций и знакам препинания.

Коды с 128 по 255 являются национальными, т.е. в национальных кодировках одному и тому же коду соответствуют различные символы.

Например, ASCII коды букв латинского алфавита:

Таблица 1

Тогда слово COMPUTER с помощью ASCII таблицы кодируется следующим образом:

C O M P U T E R
67 79 77 80 85 84 69 82
01000011 01001111 01001101 01010000 01010101 01010100 01000101 01010010

С распространением современных информационных технологий в мире возникла необходимость кодировать символы алфавитов других языков: японского, корейского, арабского, хинди, а также других специальных символов.

На смену старой системе пришла новая универсальная – UNICODE, в которой один символ кодируется не одним, а двумя байтами.

В настоящее время существует много различных кодовых таблиц (DOS, ISO, WINDOWS, KOI8-R, KOI8-U, UNICODE и др.), поэтому тексты, созданные в одной кодировке, могут не правильно отображаться в другой.

Кодирование графической информации

Графическая информация на экране монитора представляется в виде растрового изображения, которое формируется из определенного количества строк, которые, в свою очередь, содержат определенное количество точек.

Рисунок 2

Давайте посмотрим на экран компьютера через увелечительное стекло.

В зависимости от марки и модели техники мы увидим либо множество разноцветных прямоугольничков, либо множество разноцветных кружочков.

И те, и другие группируются по три штуки, причем одного цвета, но разных оттенков.

Они называются ПИКСЕЛЯМИ[1] (от английского PICture's ELement).

Пиксели бывают только трех цветов - зеленого, синего и красного.

Другие цвета образовываются при помощи смешения цветов.

Рассмотрим самый простой случай - каждый кусочек пикселя может либо гореть (1), либо не гореть (0).

Тогда мы получаем следующий набор цветов:

Таблица 2

Из трех цветов можно получить восемь комбинаций.

Для получения богатой палитры цветов базовым цветам могут быть заданы различные интенсивности, тогда количество различных вариантов их сочетаний, дающих разные краски и оттенки, увеличивается.

Шестнадцатицветная палитра получается при использовании 4-разрядной кодировки пикселя: к трем битам базовых цветов добавляется один бит интенсивности. Этот бит управляет яркостью всех трех цветов одновременно.

Число цветов, воспроизводимых на экране монитора (N), и число бит, отводимых в видеопамяти на каждый пиксель (I), связаны формулой:

Величину I называют битовой глубиной или глубиной цвета.

Чем больше битов используется, тем больше оттенков цветов можно получить.

Таблица 3

Итак, любое графическое изображение на экране можно закодировать c помощью чисел, сообщив, сколько в каждом пикселе долей красного, сколько - зеленого, а сколько - синего цветов.

Также графическая информация может быть представлена в виде векторного изображения.

Векторное изображение представляет собой графический объект, состоящий из элементарных отрезков и дуг.

Положение этих элементарных объектов определяется координатами точек и длиной радиуса.

Для каждой линии указывается ее тип (сплошная, пунктирная, штрих-пунктирная), толщина и цвет.

Информация о векторном изображении кодируется как обычная буквенно-цифровая и обрабатывается специальными программами.

Качество изображения определяется разрешающей способностью монитора, т.е. количеством точек, из которых оно складывается.

Чем больше разрешающая способность, т.е. чем больше количество строк растра и точек в строке, тем выше качество изображение.

Кодирование звуковой информации

С начала 90-х годов персональные компьютеры получили возможность работать со звуковой информацией.

Узнать стоимость написания работы
Оставьте заявку, и в течение 5 минут на почту вам станут поступать предложения!