Смекни!
smekni.com

Построение концептуальной модели (стр. 1 из 3)

Содержание

Введение

1Постановка задачи

2 Построение концептуальной модели

2.1 Описание концептуальной модели СМО

2.2 Описание процесса функционирования СМО

2.3 Построение логической схемы

2.4 Анализ задачи моделирования

2.4.1 Критерии оценки эффективности процесса функционирования СМО

2.4.2 Проверка достоверности модели системы

2.4.3 Параметры и переменные модели СМО

2.5 Выдвижение гипотез и принятие предложений

2.6 Определение процедур аппроксимации

3 Алгоритмизация и машинная реализация модели системы

3.1 Выбор вычислительных средств моделирования СМО

3.2 Программирование модели

4Получение и интерпретация результатов моделирования

4.1 Планирование машинного эксперимента

4.2 Анализ результатов моделирования

4.3 Форма представления результатов моделирования

Заключение

Список использованных источников

Приложение А – Листинг программы

Приложение Б – Статистические данные


Введение

Бурный рост промышленности и науки во всех сферах человеческой деятельности привёл в настоящее время к такому положению вещей, что создание и разработка каких-либо новых технологий, технических средств (машин, приборов, оборудования и т. п.), а также методик их применения для нужд человека становится затруднительным, а в некоторых случаях невозможным, без интенсивного применения научных методов познания и поиска.

Одной из таких обязательных сторон научного исследования является метод моделирования, без которого не обходится ни одна конструкторская и ни одна исследовательская работа.

Всякое вновь изучаемое явление или процесс бесконечно сложно и многообразно и потому до конца принципиально не познаваемо и не изучаемо. Поэтому, приступая к изучению явления или процесса, исследователь заменяет его схематической моделью, которая выбирается тем более сложной, чем подробнее и точнее нужно изучить упомянутое явления. В модели сохраняется только самые существенные стороны изучаемого явления, а все мало существенные свойства и закономерности отбрасываются.

Какие стороны изучаемого явления необходимо сохранить в модели и какие отбросить, зависит от постановки задачи исследований. Цель и задачи исследований формулируются перед началом разработки теории еще неизученного явления или уточнения уже существующей теории с целью более адекватного описания изучаемого процесса или явления.

При решении любой задачи основную роль играют эксперимент и модель, а также анализ полученных результатов. Модель дает правильно поставленный эксперимент, а эксперимент уточняет модель. Эксперимент имеет два направления: обработка результатов и планирование эксперимента.

Достоверность модели достигается посредством наблюдения и логически правильной обработки данных.

Моделирование широко применяется в технике. Это и исследование гидроэнергетических объектов и космических ракет, специальные модели для наладки приборов управления и тренировки персонала, управляющего различными сложными объектами. Многообразно применение моделирования в военной технике. В последнее время особое значение пробрело моделирование биологических и физиологических процессов.

Общеизвестна роль моделирования общественно-исторических процессов. Применение моделей позволяет проводить контролируемые эксперименты в ситуациях, где экспериментирование на реальных объектах является практически невозможным или по каким-то причинам (экономическим, нравственным и т. д.) нецелесообразным.

Большое значение на современном этапе развития науки и техники приобретают задачи предсказания, управления, распознавания. Метод эволюционного моделирования возник при попытке воспроизведения на ЭВМ поведения человека. Эволюционное моделирование было предложено как альтернатива эвристическому и бионическому подходу, моделировавшему мозг человека в нейронных структурах и сетях. При этом основная идея звучала так: заменить процесс моделирования интеллекта моделированием процесса его эволюции.

Таким образом, моделирование превращается в один из универсальных методов познания в сочетании с ЭВМ.


1 Постановка задачи

Распределенный банк данных системы сбора информации организован на базе ЭВМ, соединенных дуплексным каналом связи. Поступающий запрос обрабатывается на первой ЭВМ и с вероятностью 50% необходимая информация обнаруживается на месте. В противном случае необходима посылка запроса во вторую ЭВМ. Запросы поступают через 10±3 с, первичная обработка запроса занимает 2с, выдача ответа требует 18±2 с, передача по каналу связи занимает 3с. Временные характеристики второй ЭВМ аналогичны первой.

Смоделировать прохождение 400 запросов. Определить необходимую емкость накопителей перед ЭВМ, обеспечивающую безотказную работу системы, и функцию распределения времени обслуживания заявки.

В данной курсовой работе предполагается смоделировать работу поступления и обработку запросов на 2 – х ЭВМ от распределённого банка, определить характеристики процесса функционирования СМО: рассчитать коэффициенты загрузки каналов, нужную ёмкость накопителей перед ЭВМ, обеспечивая безотказную работу системы.

Всю работу можно условно разделить на три этапа:

· На первом этапе предполагается разработать концептуальную модель СМО, вывести математическую модель процесса функционирования СМО, провести глубокий анализ задачи моделирования и на его основе при необходимости выдвинуть гипотезы и принять соответствующие предположения.

· На втором этапе предполагается провести выбор вычислительных средств для моделирования СМО, выполнить непосредственно машинную реализацию модели системы, протестировать программу.

· На третьем, заключительном, этапе предполагается зафиксировать результаты моделирования СМО при нескольких прогонах программы, проанализировать их, представить в удобной для чтения форме, интерпретировать их и сделать соответствующие выводы.


2 Построение концептуальной модели и её формализация

2.1 Описание концептуальной модели СМО

На основании условия задачи построим концептуальную схему процесса функционирования данной системы, приведённую на рисунке 2.1.

Рисунок 2.1 – Концептуальная схема модели системы

Таким образом, в работе СМО возможны следующие ситуации:

— режим нормального обслуживания, когда запрос обрабатывается на первой ЭВМ с вероятностью 50 %, иначе – на второй, либо, при наличии свободных мест в двух очередях, ожидает своего времени;

— режим отказа в обслуживании, когда запрос покидает систему вследствие занятости ЭВМ и переполнении очереди другими запросами.

Рисунок 2.2 – Структурная схема


Структурная схема модели является выражением концептуальной, переведенной на язык мат. схем. Учитывая, что процессы, происходящие в СМО, являются процессами обслуживания заявок, используем для их формализации аппарат Q-схем. В соответствии с концептуальной моделью, используя символику Q-схем, структурная схема модели может быть представлена в виде, показанном на рисунке 2.2, где Н – накопители, К – каналы, И - источник.

Накопители Н1 и Н2 имитируют процесс ожидания пользователей в очереди, который происходит при занятости ЭВМ обработкой запросов. Пунктирные линии означают обработку запросов ЭВМ № 2 при условии, что на ЭВМ № 1 ответ на запрос отсутствует.

Каналы К1 и К2 имитируют непосредственно обработку запросов на ЭВМ.

2.2 Описание процесса функционирования СМО

С использованием введённых обозначений опишем процесс функционирования СМО. Источник генерирует сигналы случайным образом через определенные промежутки времени (10±3 сек). Поступающие заявки попадают в очередь в накопитель № 1 и ожидают в ней, если первая машина занята. Как только первая машина освобождается и в накопителе имеются заявки происходит первичная обработка запроса в течении 2 сек, после которой если нужная информация находится на первой ЭВМ то она продолжает обрабатываться в течении 18±2 сек, иначе заявка поступает в очередь в накопитель № 2. Процесс функционирования и временные характеристики ЭВМ №2 идентичны. Заявка полностью обрабатывает на ЭВМ №1 с вероятностью 50%, это обеспечивается путём подсчёта количества запросов обработанных на первой ЭВМ и числа запросов прошедших через накопитель № 1. Если первое число меньше либо равно 50% второго числа, то запрос обрабатывается на первой ЭВМ.

2.3Построение логической схемы

Для более полного понимания алгоритма модели необходимо построить логическую схему модели. Построение логической схемы модели системы из таких блоков дает ряд преимуществ на стадии ее машинной разработки, а также упрощает понимание структуры модели. При построении блочной модели проводится разбиение общего процесса функционирования системы на отдельные более мелкие по масштабу процессы.

Существует 2 вида схем для рассмотрения логической структуры модели процесса функционирования систем: обобщенные схемы и детальные схемы моделирующих алгоритмов.

Укрупненная (обобщенная) схема модели задает общий порядок действий без каких-либо уточняющих деталей. Детальная схема модели содержит уточнения, отсутствующие в обобщенной схеме, и показывает, что следует выполнить на каждом шаге и как это выполнить. При ее построении учитывается, что моделирующий механизм имеет блочную структуру. Фактически обобщенная схема — это обобщенный вид блок-схемы, показывающий основные этапы.


Рисунок -2.3.1. Логическая обобщенная схема

2.4 Анализ задачи моделирования

2.4.1 Критерии оценки эффективности процесса функционирования СМО

В рассматриваемой задаче в качестве критериев оценки эффективности процесса функционирования СМО выступают следующие вероятностно-временные характеристики: