Смекни!
smekni.com

Мониторы 2 (стр. 1 из 3)

Филиал НОУ ВПО «Санкт-Петербургский институт внешнеэкономических связей, экономики и права» в г. Перми

Экономический факультет

Заочное отделение

Кафедра экономики и менеджмента

Направление: 080500 «Менеджмент»

Контрольная работа

По дисциплине: «Информатика»

Тема: «Мониторы»

Студента 1-го курса

Мустафаева Андрея Гусейновича

Преподаватель:

Матвеева Марина Алексеевна

ст.преподаватель

г. Пермь

2007г.


Содержание:

Введение. 3

1. История развития мониторов. 4

2. Современные мониторы.. 5

2.1. Электронно-лучевые мониторы (CRT) 5

2.2. Жидкокристаллические мониторы (LCD) 6

3. Технологии будущего. 9

3.1. Плазменные экранные матрицы (PDP) 9

3.2. Светоизлучающие пластики (LEP) 9

3.3. Технология OLED.. 10

Заключение. 12

Список литературы: 13


Введение.

Сперва просто определение.

Монитор (дисплей) компьютера – это устройство, предназначенное для вывода на экран текстовой и графической информации.

Его можно смело назвать самой важной частью персонального компьютера (ну, пожалуй, сразу после системного блока). Почему он так важен? Все очень просто – кого может интересовать информация глубоко запрятанная в «железном ящике»? А если учесть, что 95% информации мы воспринимаем глазами, то можно смело утверждать, что изобретение монитора, после изобретения компьютера, было просто предопределено. Пожалуй монитор, как устройство вывода и мультимедиа-устройство, за очень короткое время, эволюционировал больше других устройств компьютера, периферии и мультимедиа. В разработку новых технологий производства мониторов, корпорации тратили и тратят огромные денежные средства и людские ресурсы. Значит легко можно сделать вывод – этот продукт перспективен и очень востребован.

Так как с экраном монитора мы постоянно контактируем во время работы (появилось даже устойчивое выражение – «пялиться в монитор»), то от его размера и качества зависит, насколько будет комфортно нашим глазам. Монитор должен быть максимально безопасным для здоровья по уровню всевозможных излучений. Также он должен обеспечивать возможность комфортной работы, предоставляя в распоряжение пользователя качественное изображение.

Раз монитор так важен, так высоки предъявляемые к нему требования, то хотелось бы поподробнее узнать о нем, как то: история развития, используемые технологии, ближайшие и долгосрочные перспективы. А так же животрепещущий вопрос пользователя : «Почему стоимость мониторов одного и того же размера по диагонали может отличаться в разы, кто и что влияет на ценообразование этого продукта?»

1. История развития мониторов

До пятидесятых годов компьютеры выводили информацию только на печатающие устройства. В то время компьютеры часто оснащали осциллографами, которые, однако использовались не для вывода информации, а для проверки электронных цепей вычислительной машины. Впервые в 1950 году в Кембриджском университете (Англия) электронно-лучевая трубка осциллографа была использована для вывода графической информации на компьютере EDASC (Electronic Delay Storage Automatic Computer).

Через полтора года английский ученый Кристофер Стретчи написал для компьютера «Марк 1» программу, игравшую в шашки и выводившую информацию на экран.

Реальный прорыв в представлении графической информации на экране монитора произошел в Америке в рамках военного проекта на базе компьютера «Вихрь». Данный компьютер использовался для фиксации информации о вторжении самолетов в воздушное пространство США. Первая демонстрация «Вихря» прошла 20 апреля 1951 года – радиолокатор посылал информацию о положении самолета компьютеру, и тот передавал на экран положение самолета-цели, которая изображалась в виде точки и буквы T (target). Это был первый крупный проект, в котором электронно-лучевая трубка использовалась для отображения графической информации.

Первые электронно-лучевые мониторы были векторными. В мониторах этого типа электронный пучок создает линии на экране, перемещаясь непосредственно от одного набора координат к другому. Из-за этого нет необходимости разбивать экран на пиксели.

Позднее появились мониторы с растровым сканированием. В них электронный пучок сканирует экран слева направо и сверху вниз, пробегая каждый раз всю поверхность экрана.

Первые жидкокристаллические материалы были открыты более 100 лет назад австрийским ученым Ф. Ренитцером. Со временем было обнаружено большое число материалов, которые можно использовать в качестве жидкокристаллических модуляторов, однако практическое использование технологии началось сравнительно недавно.

Первый рабочий жидкокристаллический дисплей был создан Фергесоном (Fergason) в 1970 году. До этого жидкокристаллические устройства потребляли слишком много энергии, срок их службы был ограничен, а контраст изображения был удручающим. Жидкие кристаллы (Liquid Crystal) - это органические вещества, способные под напряжением изменять величину пропускаемого света.

Можно заметить, что первые жидкие кристаллы отличались своей нестабильностью и были мало пригодными к массовому производству. Реальное развитие ЖК технологии началось с изобретением английскими учеными стабильного жидкого кристалла - бифенила (Biphenyl). Жидкокристаллические дисплеи первого поколения можно наблюдать в калькуляторах, электронных играх и в часах.

2. Современные мониторы

2.1. Электронно-лучевые мониторы (CRT)

Основной элемент монитора —электронно-лучевая трубка. Её передняя, обращенная к зрителю часть с внутренней стороны покрыта люминофором — специальным веществом, способным излучать свет при попадании на него быстрых электронов. Люминофор наносится в виде наборов точек трёх основных цветов — красного, зелёного и синего (триада). Эти цвета называют основными, потому что их сочетаниями (в различных пропорциях) можно представить любой цвет спектра. Наборы точек люминофора располагаются по треугольным триадам. Триада образует пиксель — точку, из которых формируется изображение (англ. pixel — picture element, элемент картинки).

На противоположной стороне трубки расположены три (по количеству основных цветов) электронные пушки. Все три пушки нацелены на один и тот же пиксель, но каждая из них излучает поток электронов в сторону своей точки люминофора.

Чтобы электроны беспрепятственно достигали экрана, из трубки откачивается воздух, а между пушками и экраном создаётся высокое электрическое напряжение, ускоряющее электроны. Перед экраном на пути электронов ставится маска — тонкая металлическая пластина с большим количеством отверстий, расположенных напротив точек люминофора. Маска обеспечивает попадание электронных лучей только в точки люминофора соответствующего цвета.

На ту часть колбы, где расположены электронные пушки, надевается отклоняющая система монитора, которая заставляет электронный пучок пробегать поочерёдно все пикселы строчку за строчкой от верхней до нижней, затем возвращаться в начало верхней строки и т.д.

Для электронно-лучевых (CRT) мониторов существуют свои характеристики, которые либо улучшают работу с компьютером, либо ухудшают ее. Одной из основных характеристик такого монитора является частота обновления экрана. Для электронно-лучевых мониторов достаточной частотой обновления экрана считается 85Гц. Эта величина показывает сколько раз в секунду будет обновляться картинка на экране. Если эта скорость невелика, то глаза начинают улавливать мерцание экрана и из-за этого быстро устают. Оптимальной частотой обновления экрана считается 100Гц, больше не имеет смысла, т.к. человеческий глаз уже не воспринимает разницу.

Еще для работы с компьютером очень важно разрешение экрана – число точек (пикселей) по вертикали и горизонтали. Большое разрешение позволяет отображать соответственно и больший объём информации, но при этом каждой объект становится более мелким. И тут важен такой фактор, как шаг точки или зерно. От этого параметра будет зависеть качество изображения: чем меньше будет его значение, тем выше уровень детализации картинки. Сегодня самое распространенное значение – 0,27мм, но в более дорогих моделях применяют трубки с еще меньшей зернистостью – 0,2-0,24мм.

2.2. Жидкокристаллические мониторы (LCD)

Поперечное сечение панели жидкокристаллического монитора представляет собой многослойный бутерброд. Крайний слой любой из сторон выполнен из стекла. Между этими слоями расположен тонкопленочный транзистор, панель цветного фильтра, обеспечивающая нужный цвет - красный, синий или зеленый, и слой жидких кристаллов. Вдобавок ко всему существует флуоресцентная подсветка, освещающая экран изнутри.

При нормальных условиях, когда нет электрического заряда, жидкие кристаллы находятся в аморфном состоянии. В этом состоянии жидкие кристаллы пропускают свет. Количеством света, проходящего через жидкие кристаллы, можно управлять с помощью электрических зарядов - при этом изменяется ориентация кристаллов.

Как и в традиционных электроннолучевых трубках, пиксель формируется из трех участков - красного, зеленого и синего. А различные цвета получаются в результате изменения величины соответствующего электрического заряда (что приводит к повороту кристалла и изменению яркости проходящего светового потока).

Экран монитора состоит из матрицы LCD-элементов. Для того чтобы получить изображение, нужно адресовать отдельные LCD-элементы. Различают два основных метода адресации и соответственно два вида матриц: пассивную и активную. В пассивной матрице точка изображения активируется подачей напряжения на проводники-электроды строки и столбца. При этом электрическое поле возникает не только в точке пересечения адресных