КНИГИ        регистрация / вход

Великая теорема Ферма

СОДЕРЖАНИЕ: История Великой теоремы Ферма весьма занимательна и поучительна, и не только для математиков. Пьер де Ферма внес вклад в развитие самых различных областей математики, однако основная часть его научного наследия была опубликована лишь посмертно.

Для целых чисел n больше 2 уравнение xn + yn = zn не имеет ненулевых решений в натуральных числах.

Вы, наверное, помните со школьных времен теорему Пифагора: квадрат гипотенузы прямоугольного треугольника равен сумме квадратов катетов. Возможно, вы помните и классический прямоугольный треугольник со сторонами, длины которых соотносятся как 3 : 4 : 5. Для него теорема Пифагора выглядит так:

32 + 42 = 52

Это пример решения обобщенного уравнения Пифагора в ненулевых целых числах при n = 2. Великая теорема Ферма (ее также называют «Большой теоремой Ферма» и «Последней теоремой Ферма») состоит в утверждении, что при значениях n > 2 уравнения вида xn + yn = zn не имеют ненулевых решений в натуральных числах.

История Великой теоремы Ферма весьма занимательна и поучительна, и не только для математиков. Пьер де Ферма внес вклад в развитие самых различных областей математики, однако основная часть его научного наследия была опубликована лишь посмертно. Дело в том, что математика для Ферма была чем-то вроде хобби, а не профессиональным занятием. Он переписывался с ведущими математиками своего времени, однако публиковать свои работы не стремился. Научные труды Ферма в основном обнаружены в форме частной переписки и обрывочных записей, часто сделанных на полях различных книг. Именно на полях (второго тома древнегреческой «Арифметики» Диофанта. — Прим. переводчика) вскоре после смерти математика потомки и обнаружили формулировку знаменитой теоремы и приписку:

«Я нашел этому поистине чудесное доказательство, но поля эти для него слишком узки».

Увы, судя по всему, Ферма так и не удосужился записать найденное им «чудесное доказательство», и потомки безуспешно искали его три с лишним века. Из всего разрозненного научного наследия Ферма, содержащего немало удивительных утверждений, именно Великая теорема упорно не поддавалась решению.

Кто только не брался за доказательство Великой теоремы Ферма — всё тщетно! Другой великий французский математик, Рене Декарт (René Descartes, 1596–1650), называл Ферма «хвастуном», а английский математик Джон Уоллис (John Wallis, 1616–1703) — и вовсе «чертовым французом». Сам Ферма, правда, все-таки оставил после себя доказательство своей теоремы для случая n = 4. С доказательством для n = 3 справился великий швейцарско-российский математик XVIII века Леонард Эйлер (1707–83), после чего, не сумев найти доказательств для n > 4, в шутку предложил устроить обыск в доме Ферма, чтобы найти ключ к утерянному доказательству. В XIX веке новые методы теории чисел позволили доказать утверждение для многих целых чисел в пределах 200, однако, опять же, не для всех.

В 1908 году была учреждена премия в размере 100 000 немецких марок за решение этой задачи. Призовой фонд был завещан германским промышленником Паулем Вольфскелем (Paul Wolfskehl), который, согласно преданию, собирался покончить жизнь самоубийством, но так увлекся Великой теоремой Ферма, что передумал умирать. С появлением арифмометров, а затем и компьютеров планка значений n стала подниматься всё выше — до 617 к началу Второй мировой войны, до 4001 в 1954 году, до 125 000 в 1976 году. В конце XX столетия мощнейшие компьютеры военных лабораторий в Лос-Аламосе (Нью-Мексико, США) были запрограммированы на решение задачи Ферма в фоновом режиме (по аналогии с режимом экранной заставки персонального компьютера). Таким образом удалось показать, что теорема верна для невероятно больших значений x, y, z и n, но строгим доказательством это послужить не могло, поскольку любые следующие значения n или тройки натуральных чисел могли опровергнуть теорему в целом.

Наконец в 1994 году английский математик Эндрю Джон Уайлс (Andrew John Wiles, р. 1953), работая в Принстоне, опубликовал доказательство Великой теоремы Ферма, которое, после некоторых доработок, было признано исчерпывающим. Доказательство заняло более ста журнальных страниц и основывалось на использовании современного аппарата высшей математики, который в эпоху Ферма разработан не был. Так что же тогда имел в виду Ферма, оставляя на полях книги сообщение о том, что доказательство им найдено? Большинство математиков, с которыми я беседовал на эту тему, указывали, что за века накопилось более чем достаточно некорректных доказательств Великой теоремы Ферма, и что, скорее всего, сам Ферма нашел подобное доказательство, однако не сумел усмотреть в нем ошибку. Впрочем, не исключено, что все-таки имеется какое-то короткое и изящное доказательство Великой теоремы Ферма, которое никто до сих пор не нашел. С уверенностью можно утверждать лишь одно: сегодня мы точно знаем, что теорема верна. Большинство математиков, я думаю, безоговорочно согласятся с Эндрю Уайлсом, который заметил по поводу своего доказательства: «Теперь наконец мой ум спокоен».

***

ПьердеФЕРМА

Pierre de Fermat, 1601–65

Французский математик и юрист. Родился в Бомон-де-Ломань (Beaumont-de-Lomagne). Изучал право, работал судьей. В свободное время увлекался математикой и внес значительный вклад в развитие различных отраслей этой науки, за что получил прозвище «король любителей». Помимо теории чисел (так называется область математики, к которой относится Великая теорема Ферма) еще до Ньютона разработал многие основы дифференциального исчисления, а совместно с Блезом Паскалем (Blaise Pascal, 1623–62) основал теорию вероятностей. В оптике сформулировал принцип Ферма, согласно которому преломление света на границе двух сред обусловлено различной скоростью распространения света в различных средах.

СКАЧАТЬ ДОКУМЕНТ

Предложения интернет-магазинов

Великая Отечественная война (1941-1945). Школьный справочник для начальных классов

Автор(ы): Замотина М.   Издательство: Стрекоза, 2016 г.  Серия: Школьный справочник для нач. классов

Цена: 106 руб.   Купить

Великая Отечественная война (1941-1945). Школьный справочник для начальных классов. Для младшего школьного возраста.


Великая Победа. Награды войны (демонстрационные картинки)

  Издательство: Сфера, 2015 г.  Серия: Великая Победа

Цена: 124 руб.   Купить

Комплект "Награды" посвящен знакам отличия, которыми награждались солдаты и офицеры в годы Великой Отечественной войны (1941-1945). Лаконичные тексты картинок содержат: - краткую историю создания ордена или медали; - описание награды и заслуг, за которые она вручалась; - фамилии героев Войны, получивших эту награду. Информация разбита на удобные для запоминания блоки. Знания даются сжато, но в достаточном для ребенка 6-11 лет объеме. Фотографии наград помогут ребенку связать словесное описание и образ, сделают рассказ интересным. Картинки подходят для индивидуальной и групповой работы. Рекомендуем приобрести все тематически связанные комплекты серии "Великая Победа". В наборе 10 картинок: - Медаль "Золотая Звезда" Героя Советского Союза - Орден Ленина - Орден Славы I, II, III степени - Орден Красного Знамени СССР - Орден Красной Звезды - Орден Отечественной войны I, II степени - Орден "Победа" - Орден Нахимова I, II степени - Орден Кутузова I, II, III степени - Орден Суворова I, II, III степени


Великая Победа. Города-герои (демонстрационные картинки)

  Издательство: Сфера, 2016 г.  Серия: Великая Победа

Цена: 180 руб.   Купить

Комплект "Города-герои" посвящен героическому подвигу 12 городов и одной крепости бывшего СССР в годы Великой Отечественной войны (1941-1945). Лаконичные тексты картинок содержат: - описание подвига защитников города; - названия мест сражений, фамилии героев обороны и военачальников; - краткое описание событий войны, связанных с боями за город; - выводы о значении обороны города для победы нашей страны; - описание памятников, посвященных войне. Информация разбита на удобные для запоминания блоки. Знания даются сжато, но в достаточном для ребенка 6-11 лет объеме. Фотографии мемориальных комплексов и монументов помогут ребенку представить места исторических событий, познакомят с другими городами и их достопримечательностями, сделают рассказ об обороне города образным и интересным. Картинки подходят для индивидуальной и групповой работы. Рекомендуем использовать все тематически связанные комплекты серии "Великая Победа". В наборе 14 картинок: - Карта с городами-героями - Брест (крепость-герой) - Волгоград (Сталинград) - Керчь - Киев - Ленинград (Санкт-Петербург) - Минск - Москва - Мурманск - Новороссийск - Одесса - Севастополь - Смоленск - Тула.


Комплект наглядных пособий. Великая наука. Зарубежные ученые. Демонстрационные картинки, беседы

Автор(ы): Цветкова Т. В.   Издательство: Сфера, 2016 г.  Серия: Великая Наука

Цена: 180 руб.   Купить

Комплект демонстрационных материалов "Зарубежные ученые" посвящен выдающимся деятелям науки разных стран мира, с достижениями которых знакомится ребенок. Пособие содержит: интересные биографические факты; краткий обзор жизни ученых; описание их важнейших открытий и изобретений. Знания даются сжато, но в достаточном для ребенка объеме. Работа с материалами поможет дошкольникам и школьникам расширить кругозор и ближе познакомиться с историей развития мировой науки и техники. Очень важно, чтобы ребенок с ранних лет понимал, что предметы, которые нас окружают и делают нашу жизнь лучше, создаются, трудами многих людей. Особую роль в их появлении играют выдающиеся ученые и изобретатели. Знакомство с жизнью и открытиями великих европейских ученых приобщит детей к мировой культуре, покажет пример служения науке, направить на путь творческого развития, поиска новых знаний и изобретений. Ученые-педагоги рекомендуют обязательно размещать портреты великих людей в помещениях детского сада и школы (постоянно или временно), а родителям - беседовать с детьми, используя наглядный материал.

ДОБАВИТЬ КОММЕНТАРИЙ  [можно без регистрации]
перед публикацией все комментарии рассматриваются модератором сайта - спам опубликован не будет

Ваше имя:

Комментарий

Все материалы в разделе "Математика"