Смекни!
smekni.com

Несостоятельность теории электромагнетизма (стр. 2 из 5)

Не трудно догадаться, что такое состояние физических моделей в классической электродинамике не могло не отразиться на формализации их в виде уравнений электродинамики.

При исследовании уравнений электродинамики и методов решения полевых задач, обнаруживается пренебрежение основными положениями классической теории поля (например, утверждение об условности разделения полей на потенциальные и вихревые), что имеет место во всех общеизвестных литературных источниках (см., например [1(а)]). В результате этого допускается произвол в методах решения полевых задач, появляются решения в виде виртуальных полей, и возникает необходимость введения дополнительных калибровочных соотношений, например: калибровка Лоренца, калибровка Кулона и т. д.[1;2], без какой.либо убедительной мотивации применения той или иной калибровки, что делает применение теории непосредственно в практической деятельности проблематичным.

На основании ранее сказанного, полагаю разумным, прежде чем перейти к исследованиям уравнений электродинамики Максвелла, уточнить основные понятия классической теории поля, такие как:

1) основная задача классической теории поля;

2) определение вектора поля в классической теории поля в общем виде;

3) действие дифференциальных операторов классической теории поля на вектор поля, заданный в общем виде;

ОСНОВНЫЕ ПОНЯТИЯ КЛАССИЧЕСКОЙ ТЕОРИИ ПОЛЯ

1. Основная задача теории поля

Основной задачей классической теории поля является определение пространственного распределения векторных и (или) скалярных полей по заданному распределению источников поля в этом пространстве ("прямая" задача ).

Так же возможна постановка и "обратной" задачи, т.е. задачи определения распределения источников поля в пространстве по заданному распределению векторного поля и (или) поля скалярного потенциала в этом пространстве.

Таким образом, постановка задачи об определении распределения поля в пространстве без учета распределения источников поля бессмысленна с позиции классической теории поля в рамках основной задачи теории поля.

2. Определение вектора поля в общем виде

Из классической теории поля следует существование трех видов полей:
1) градиентное поле - вектор поля является градиентом скалярного потенциала,

2) вихревое поле - вектор поля является ротором векторного потенциала,

3) смешанное поле - вектор поля является суммой градиента скалярного потенциала и ротора векторного потенциала, что сформулировано в основной теореме классической теории поля - теореме Гельмгольца [2(а;б;в;г)].

Теорема Гельмгольца

Всякое однозначное и непрерывное векторное поле F, обращающееся в ноль в бесконечности, может быть представлено, и притом единственным образом, в виде суммы градиента некоторой скалярной функции j и ротора некоторой векторной функции A , дивергенция которой равна нулю:

F = grad j + rot A ,

div A = 0,

где:

j . скалярный потенциал поля F,

A . векторный потенциал поля F,

при условии что:

и эти интегралы предполагаются существующими [2, г].

Тогда, согласно основной задаче теории поля, для отыскания распределения поля вектора F в пространстве необходимо задать распределение в этом пространстве источников (возбудителей) поля вектора F, т.е. значения функций div(gradj) и rot(rotA), составляя дифференциальные уравнения в частных производных, решением которых с соответствующими краевыми, и начальными условиями и будет поле искомого вектора F.

Очевидно, что задача однородного распределения источников поля в бесконечном пространстве, т.е. удовлетворяющая след. соотношению:

не рассматривается, как не имеющая физического смысла и приводящая к математическим парадоксам.

При решении различных прикладных задач часто используется широко распространенное заблуждение об условности разделения полей на градиентные и вихревые, основанное на неверной интерпретации суперпозиции вихревого и градиентного полей, имеющей место в определении вектора поля в общем виде (теорема Гельмгольца). Рассмотрим возможность подобной интерпретации. Пусть мы имеем некоторое поле вектора F, удовлетворяющее следующему условию:

Подействуем оператором " rot " на данный вектор,

Т.к. ротор градиента j тождественно равен нулю, ротор ротора A тоже равен нулю по всему пространству существования вектора A .

Подействуем оператором "div" на вектор F,

но, дивергенция ротора тождественно равна нулю, следовательно, дивергенция градиента j тоже равна нулю по всему пространству существования поля градиента j .

Из полученных соотношений видно, что, если разделение полей на градиентные и вихревые условно, то отвечающее этому условию векторное поле не имеет источников в пространстве существования поля и, следовательно, не является объектом классической теории поля, как не отвечающее основной задаче теории поля. Условность разделения полей на градиентные и вихревые, выполняется также при тождественном равенстве нулю поля F.

Таким образом, в рамках основной задачи классической теории поля не существует отличных от нуля полей, для которых выполнялась бы условность разделения полей на градиентные и вихревые, и, следовательно,разделение полей на градиентные и вихревые не условно, а фундаментально.

3. Действие дифференциальных операторов на вектор, заданный в общем виде.

В дальнейшей росписи действий операторов на вектор, заданный в общем виде, его составляющие будут заключены в круглые скобки исключительно с целью указания на то, что заключенные в них операторы "grad" и "rot" не будут нами расписываться, а нужны только для обозначения градиентной и вихревой составляющей вектора.

а) Действие оператора "rot" на вектор в общем виде:

Т.е. после действия оператора "rot" на вектор F в общем виде результирующий вектор носит строго вихревой характер, и его величина не зависит от градиентной составляющей (grad j) вектора F.

б) Действие оператора " div " на вектор в общем виде:

результат действия оператора "div" на вектор в общем виде есть скаляр, величина которого не зависит от вихревых составляющих вектора F.

в) Действие оператора "rot rot" на вектор в общем виде:

Поскольку в результате действия оператора "rot rot" на вектор F под оператором (

) остался только вектор .rot A., имеющий строго вихревой характер, бессмысленно вводить в вектор "А" какую либо градиентную составляющую, т.к. после действия оператора "rot" она тождественно обнуляется и никак не определяется данным уравнением.

Из того, что:

следует:

Т.е. роспись оператора

зависит от вида вектора, на который действует оператор, и в общем виде определяется следующим выражением:

Действие оператора набла (

) также зависит от вида функции, на которую он действует, так:

В данном перечне приведены только действия операторов, не приводящие к тождественному нулю.

Проведенный анализ классической теории поля позволил:

1) конкретизировать постановку классической полевой задачи, отбросив задачи приводящие к математическим парадоксам и не имеющие физического смысла;

2) показать фундаментальность разделения полей на градиентные и вихревые;

3) дать точные выражения действий дифференциальных операторов теории поля на вектор, заданный в общем виде, из которых стало видно, что после действия дифференциального оператора классической теории поля на вектор поля, заданный в общем виде, нетривиальный результат получается только от действия оператора на соответствующую ему составляющую вектора в общем виде.

Т.е.

т.к.