Смекни!
smekni.com

Основные концепции физики ХХ века (стр. 1 из 11)

Революция в физике

Физика XIX века представляла собой основанную на механике Ньютона систему знаний, которая создателям этой системы представлялась почти завершенной. Революция в физике уже в самом начале ХХ века выявила ограниченность классической механики, чем поставила под сомнение истинность подобных представлений. Классическая физика, исходя из заложенного Декартом идеала, представляла Вселенную в виде механической системы, поведение которой можно абсолютно точно предсказать, если известны параметры, которые определяют начальное состояние этой системы. Иными словами, основные утверждения классической механики имеют вполне определенный и однозначный характер. Разного рода неопределенности и неоднозначности, могущие иметь место при измерении величин, объясняются в ее рамках неизбежными погрешностями, сложностью процедуры измерения и т.п.

Подобная картина основывалась на предположениях, которые считались совершенно очевидными. Первое заключалось в том, что мы живем в жестком и определенном мире, в котором любое явление может быть строго локализовано, и что все развитие физического мира есть изменение положения тел в пространстве с течением времени. Второе исходило из возможности сделать пренебрежимо малым возмущение естественного хода изучаемого процесса, вносимое процедурой осуществления эксперимента. Как оказалось, оба предложения могут быть справедливыми лишь для определенных условий.

Открытие кванта действия выявило противоречие между концепцией строгой локализации и концепцией динамического развития. Каждая из этих концепций, взятая в отдельности от другой, может быть успешно использована для изучаемых явлений, но, будучи одновременно использованными, они не дают точных результатов. Обе они - своего рода идеализация: первая - статистическая, исключающая всякое движение и развитие, вторая - динамическая, исключающая понятие точного положения в пространстве и момента времени. В классической механике перемещения в пространстве и определение скорости изучаются вне зависимости от того, каким образом физически эти перемещения реализуются. От абстрактного изучения законов движения можно переходить к динамике. Применительно к явлениям микромира подобная ситуация, как выявилось, невозможна принципиально. Здесь пространственно-временная локализация, лежащая в основе кинематики, возможна лишь для некоторых частных случаев, которые зависят от конкретных динамических условий движения. В макромасштабах использование кинематики вполне допустимо. Для микромасштабов, где главная роль принадлежит квантам, кинематика, изучающая движение вне зависимости от динамических условий, теряет смысл.

Для масштабов микромира и второе положение оказывается несостоятельным - оно справедливо лишь для явлений большого масштаба. Выявилось, что попытки измерить какую-либо величину, характеризующую изучаемую систему, влечет за собой неконтролируемое изменение других величин, характеризующих данную систему: если предпринимается попытка установить положение в пространстве и времени, то это приводит к неконтролируемому изменению соответствующей сопряженной величины, которая определяет динамическое состояние системы. Так, невозможно точно измерить в одно и то же время две взаимно сопряженные величины. Чем точнее определяется значение одной величины, характеризующей систему, тем более неопределенным оказывается значение сопряженной ей величины. Это обстоятельство повлекло за собой существенное изменение взглядов на понимание детерминизма, уровней организации реальности.

Детерминизм классической механики исходил из того, что будущее в известном смысле полностью содержится в настоящем - этим и определяется возможность точного предвидения поведения системы в любой будущий момент времени. Такая возможность предлагает одновременное определение взаимно сопряженных величин. В области микромира это оказалось невозможным, что и вносит существенные изменения в понимание возможностей предвидения и взаимосвязи явлений природы: раз значение величин, характеризующих состояние системы в определенный момент времени, можно установить лишь с долей неопределенности, то исключается возможность точного предсказания значений этих величин в последующие моменты времени - можно лишь предсказать вероятность получения тех или иных величин. В этом случае связь между результатами последовательных измерений не будет отвечать требованиям классического детерминизма. Здесь можно говорить о вероятностной связи, связанной с неопределенностью, вытекающей из существования кванта действия.

Другая революционная идея, повлекшая за собой изменение классической физической картины мира, касается создания теории поля. Классическая механика пыталась свести все явления природы к силам, действующим между частицами вещества - на этом основывалась концепция электрических жидкостей. В рамках этой концепции реальными были лишь субстанция и ее изменения - здесь важнейшим признавалось описание действия двух электрических зарядов с помощью относящихся к ним понятий. Описание же поля между этими зарядами, а не самих зарядов было весьма существенным для понимания действия зарядов. Созданной новой реальности места в механической картине мира не было. В результате физика стала иметь дело с двумя реальностями - веществом и полем. Если классическая физика строилась на понятии вещества, то с выявлением новой реальности физическую картину мира приходилось пересматривать. Попытки объяснить электромагнитные явления с помощью эфира оказалось несостоятельными. Эфир экспериментально обнаружить не удалось. Это привело к созданию теории относительности, заставившей пересмотреть представления о пространстве и времени, характерные для классической физики. Таким образом, две концепции - теория квантов и теория относительности - стали фундаментом для новых физических концепций. Д. Бернал выделил три фазы в развитии научной революции. Первая фаза охватывала период с 1895 по 1916 год. Для нее характерно исследование новых миров, создание новых представлений, главным образом с помощью технических и теоретических средств науки ХХ века. Это период в основном индивидуальных достижений супругов Кюри, Резерфорда, Планка, Эйнштейна, Бора и др. Физические исследования ведутся в университетских лабораториях, они слабо связаны с промышленностью, используемая аппаратура дешева и проста.

Вторая фаза (1919-1939 гг.) характеризуется массовым внедрением промышленных методов и организованности в физические исследования. Хотя в это время фундаментальные исследования ведутся главным образом в университетских лабораториях, отдельные крупные ученые начинают возглавлять научные группы, начинают устанавливать связи с крупными промышленными исследовательскими лабораториями. Растет число ученых. Физика расширяет сферу своей деятельности. Начинается военное использование физических знаний, начинается установление связи между руководителями физических исследований с промышленными и государственными организациями в военных целях.

Третья фаза характеризуется еще большим расширением участия физики в военных программах. Физические исследования требуют дорогостоящей аппаратуры, становятся все более дорогостоящими, в их организации все большую роль играет государство.

Современный этап развития физических исследований становится еще более дорогостоящим, что ставит вопрос о необходимости международной кооперации в осуществлении наиболее крупных проектов. Физика стала основой естествознания. Появление и развитие таких разделов физики, как квантовая механика, квантовая электродинамика, общая теория относительности, теория строения атомов, физика атомного ядра и субатомных частиц, квантовая физика твердого тела, квантовая физическая теория строения химических соединений привело к созданию новой физической картины мира, к превращению физики из науки, которая изучает и объясняет механизм явлений, в науку, разрабатывающую методы искусственного воспроизведения физических процессов, в основу современных технических устройств, в лидера современного естествознания.

Теория относительности

а) Кризис классических представлений о пространстве и времени

Вначале вспомним, что концепция света Френеля включала признание существования эфира, заполняющего все пространство и проникающего во все тела, в котором распространялись световые волны. Концепция света Максвелла понятие эфира сделала не нужным. Несмотря на это, концепция эфира не сошла с арены физики. Дело заключалось в том, что уравнения электродинамики Максвелла были справедливыми в одной системе координат и несправедливыми в другой, движущейся прямолинейно и равномерно относительно первой. Классическая механика, исходившая из признания существования абсолютного времени, единого для всех систем отсчета и любых наблюдателей, признавала, что расстояние между двумя точками пространства должно иметь одно значение во всех системах координат, используемых для определения положения тел в пространстве (т.е. данное расстояние является инвариантом). Преобразование Галилея определяло преобразование координат при переходе от одной системе отсчета к другой. Иначе говоря, если, например, уравнения Ньютона были справедливыми в системе координат, связанной с неподвижными звездами, то они оказывались справедливыми и в других системах отсчета, которые двигались прямолинейно и равномерно относительно данных неподвижных звезд. Таким образом, получалось, что уравнения Максвелла справедливы только в одной системе отсчета, связанной с некоей средой, заполняющей всю вселенную. Вот эту среду и продолжали считать эфиром. Все различие с первоначальной трактовкой эфира заключалось в том, что если раньше под эфиром понимали особую упругую среду, которая была способна передавать световые колебания, то теперь эфиру стала отводиться роль абстракции, необходимой для фиксации тех систем отсчета, в которых справедливы уравнения Максвелла. Однако и данную роль эфир не мог играть.