Смекни!
smekni.com

Симметрия и принципы инвариантности в физике (стр. 1 из 5)

В. И. Черепанов

Мы с готовностью воспринимаем лишь те физические теории, которые обладают изяществом.

А. Эйнштейн

Слово "симметрия" ("symmetria") имеет греческое происхождение и означает "соразмерность". В повседневном языке под симметрией понимают чаще всего упорядоченность, гармонию, соразмерность. Гармоничная согласованность частей и целого является главным источником эстетической ценности симметрии [1-4]. Кристаллы издавна восхищали нас своим совершенством, строгой симметричностью форм. Симметричные мозаики, фрески, архитектурные ансамбли будят в людях чувство прекрасного, музыкальные и поэтические произведения вызывают восхищение именно своей гармоничностью. Таким образом, можно говорить о принадлежности симметрии к категории прекрасного.

Научное определение симметрии принадлежит крупному немецкому математику Герману Вейлю (1885-1955), который в своей замечательной книге "Симметрия" [1] проанализировал также переход от простого чувственного восприятия симметрии к ее научному пониманию. Согласно Вейлю, под симметрией следует понимать неизменность (инвариантность) какого-либо объекта при определенного рода преобразованиях. Можно сказать,что симметрия есть совокупность инвариантных свойств объекта. Например, кристалл может совмещаться с самим собой при определенных поворотах, отражениях, смещениях. Многие животные обладают приближенной зеркальной симметрией при отражении левой половины тела в правую и наоборот. Однако подчиняться законам симметрии может не только материальный, но и, к примеру, математический объект. Можно говорить об инвариантности функции, уравнения, оператора при тех или иных преобразованиях системы координат. Это в свою очередь позволяет применять категорию симметрии к законам физики. Так симметрия входит в математику и физику, где она также служит источником красоты и изящества.

Постепенно физика открывает все новые виды симметрии законов природы: если вначале рассматривались лишь пространственно-временные (геометрические) виды симметрии, то в дальнейшем были открыты ее негеометрические виды (перестановочная, калибровочная, унитарная и др.). Последние относятся к законам взаимодействий, и их объединяют общим названием "динамическая симметрия".

Принципы инвариантности играют очень важную роль в современной физике: с их помощью обоснованы старые и предсказаны новые законы сохранения, облегчено решение многих фундаментальных и прикладных задач и, что особенно важно, удалось добиться первых успехов на пути объединения фундаментальных взаимодействий. Эти принципы обладают большой общностью. Выдающийся американский физик-теоретик Ю. Вигнер [5] отметил, что эти принципы относятся к законам природы так же, как законы природы относятся к явлениям, т.е. симметрия "управляет" законами, а законы "управляют" явлениями. Если бы не было, например, инвариантности законов природы относительно смещений в пространстве и времени, то вряд ли наука вообще смогла бы устанавливать эти законы.

Читателям, интересующимся общенаучным и философским значением симметрии, можно порекомендовать уже упоминавшуюся книгу Г. Вейля [1] , а также ряд статей и лекций Ю. Вигнера, собранных в его книге "Этюды о симметрии" [5]. На широкий круг читателей рассчитана брошюра А. Компанейца [6]. Для более подготовленных читателей рекомендуем учебную [7-9] и монографическую [10-12] литературу.

Целью настоящей статьи является краткое популярное изложение основных понятий теории симметрии и принципов инвариантности в современной физике.

1. Пространственно-временные виды симметрии

Рисунок. Оси симметрии куба

Наиболее наглядным видом симметрии является пространственная (геометрическая) симметрия, которая имеет ряд разновидностей: вращательная, зеркальная, трансляционная и др. Например, шар (или сфера) обладает полной вращательной симметрией, т.е. вращение шара вокруг любой оси, проходящей через его центр, на любой угол  не меняет положения шара в пространстве; конус имеет полную одноосную симметрию; куб - три оси симметрии 4-го порядка (с поворотами на углы, кратные 2 /4 ), шесть осей симметрии 2-го порядка ( ) и четыре оси симметрии 3-го порядка (  ) (см. рис.). Шар, конус и куб имеют еще плоскости симметрии (первые два - бесконечное число, а куб - девять плоскостей симметрии).

Особым видом симметрии является инверсионная симметрия, при которой каждая точка объекта с радиус-вектором r преобразуется в точку с радиус-вектором -r (при этом радиус-вектор исходит из центра инверсии).

Заметим, что вместо преобразований самого объекта можно производить соответствующие преобразования системы координат: если после преобразования объект в новой системе координат занимает то же положение, что и в старой, то такое преобразование координат есть преобразование симметрии объекта. Такое определение операций симметрии удобнее, когда мы имеем дело с математическими объектами. Если математический объект (функция, оператор, уравнение) остается инвариантным при определенном преобразовании координат, то это преобразование считается преобразованием (операцией) симметрии этого объекта. Например, функции f = f(x2+y2+z2) и (x2+y2) обладают в трехмерном пространстве: первая - сферической, а вторая - аксиальной симметрией.

Совокупность операций симметрии любого объекта образует группу симметрии этого объекта, основное свойство элементов которой состоит в том, что последовательное применение двух операций симметрии g1 и g2 есть опять-таки операция симметрии g3 этого объекта (называемая произведением этих операций g3=g1 x g2 ). Кроме того, для каждой операции симметрии g в этой же совокупности имеется обратная операция g-1 , переводящая объект в первоначальное положение, т.е. gg-1=E - тождественное преобразование. Выполняется также закон ассоциативности (g1g2)g3=g1(g2g3 ). Заметим, что в общем случае g1g2g2g1 (напр., если это повороты вокруг разных осей). Если же для всех элементов группы g1g2=g2g1 , то группа называется абелевой. Часть элементов группы, вновь обладающая всеми свойствами группы, называется подгруппой.

Вращательные операции симметрии шара (сферы) образуют группу вращений R, конуса - группу C , куба - группу O.

Все элементы группы симметрии можно разбить на классы сопряженных элементов, отнеся в каждый класс повороты вокруг эквивалентных осей симметрии или отражения в эквивалентных плоскостях симметрии (эквивалентными называются оси или плоскости, которые могут быть переведены друг в друга с помощью каких-либо операций симметрии из этой же группы). Например, группа симметрии куба O имеет 5 классов: E ,6C4, 3C42, 6C2, 8C3 .

Из сказанного ясно, что можно говорить о симметрии физических законов, коль скоро последние выражаются математическими уравнениями. Например, закон всемирного тяготения гласит, что сила взаимного притяжения двух тел пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними. Следовательно, сила притяжения не зависит от положения этой пары в пространстве, а только от расстояния между телами. Это означает, что данный закон инвариантен относительно переноса или вращения этой пары тел в целом (или, с математической точки зрения, относительно переноса или вращения системы координат). Это не было бы так, если бы пространство не было однородным и изотропным. Такая переносная (трансляционная) симметрия является еще одной разновидностью пространственной симметрии.

Другой разновидностью симметрии выступает инвариантность физических законов относительно сдвигов во времени. Правда, согласно представлениям современной космологии, в истории развития Вселенной, по-видимому, были периоды радикальных изменений, однако эти изменения объяснимы с позиций более общих законов, остающихся неизменными с течением времени.

Менее очевидной является инвариантность физических законов при переходе от одной системы отсчета к другой, движущейся относительно первой прямолинейно и равномерно. Однако эксперименты показывают, что невозможно установить, которая из этих систем отсчета покоится, а которая движется. Этот факт лег в основу специальной теории относительности, согласно которой физические законы должны быть инвариантны относительно преобразований Лоренца. Последние включают специальные преобразования не только координат, но и времени. Эту разновидность симметрии физических законов также можно отнести к разряду геометрических (имея в виду четырехмерную геометрию Минковского).

Выше уже говорилось об инверсионной симметрии. Но обладают ли такой симметрией физические законы? Долгое время считалось, что обладают, пока опыты китаянки Цзяньсюн Ву (США) по изучению -распада ориентированных в магнитном поле ядер кобальта 60Co, проведенные в 1957 г., не показали, что на слабые взаимодействия 1 инверсионная симметрия не распространяется. Однако для большинства физических законов инверсионная симметрия соблюдается.

Подчеркнем следующее важное обстоятельство. Если какое-либо уравнение инвариантно относительно определенных операций симметрии, то это не означает, что все его решения обладают такой же симметрией (хотя для части решений это возможно). Дело в том, что на формирование решений влияют еще начальные и граничные условия. Например, несмотря на то, что гравитационное поле Солнца можно считать сферически симметричным, планеты движутся вокруг Солнца не по круговым, а по эллиптическим траекториям. Другой пример - кристалл, инвариантный при дискретных трансляциях (кратных постоянным решетки), хотя электрические силы, действующие между его атомами, не меняются при любых смещениях кристалла в целом. Симметрия материальных структур, образуемых за счет фундаментальных взаимодействий, может быть намного ниже, чем симметрия последних. Учитывая это, можно говорить о структурной симметрии материальных объектов. Априорное определение возможных видов симметрии устойчивых материальных структур часто представляет собой трудную проблему.