Смекни!
smekni.com

Спектральный анализ сигналов электрооптического рассеяния света в аэродисперсной среде (стр. 2 из 2)

Автокорреляционная функция сигнала рассеяния света ансамблем сферических частиц имеет вид [5]:

g(2)(
)=1-e-2Dk2
.
(3)

Здесь k=(4

n/
)sin
/2; D - коэффициент диффузии, он определяется из зависимости Стoкса-Эйнштейна:

D=kT/(6

0R),

где

0 - вязкость дисперсионной среды; R - аэродинамический радиус частицы;
- время корреляции;
- угол рассеяния;
- длина волны света (в вакууме); k - постоянная Больцмана; T - абсолютная температура; n – показатель преломления.

Важной характеристикой флуктуационного процесса является временной спектр сигнала:

где

(t) - временная автокорреляционная функция сигнала;
- круговая частота.

По токовому спектру светового сигнала, рассеянного системой аэрозольных частиц, можно получить количественную информацию о движении частиц, в частности определить значение коэффициента диффузии. В работе [6] показано, что в тех случаях, когда спектральное распределение S(

) света, рассеянного на брoунoвских частицах, имеет вид линии Лоренца с шириной Г, коэффициент диффузии можно найти из выражения Г=2Dk2.

Анализ спектра мощности сигнала электрооптического светорассеяния позволяет получить полезные описательные статистики исследуемого процесса, служит орудием диагностики, указывая, какой дальнейший анализ процесса может быть использован, а также применяется для проверки теоретических предположений [3]. Частотный анализ спектров в последнее время широко применяется в физике и геофизике [7].

В основу программы для получения спектров с помощью микро-ЭВМ был положен алгоритм быстрого преобразования Фурье (БПФ). Ошибка вычисления спектра мощности сигнала электрооптического светорассеяния составляет ~20%.

Ошибка обусловлена в основном конечной протяженностью реализации процесса, некоторую дополнительную ошибку вносит фотоэлектронный умножитель (ФЭУ). Исходя из оценки, даваемой Ван-дер-Зилoм [6], спектральная плотность флуктуаций S(

), получаемых на выходе ФЭУ аэрозольного фотометра, равна сумме шумов умноженного первичного ток Jперв. и усиленных шумов вторичной эмиссии от каждого из n динoдoв.
S(
)
2e
Jперв.
2n
Г,
(4)

где e - заряд электрона;

- коэффициент умножения динoднoгo каскада;
- параметр шума,
+1; Г - коэффициент возрастания шума ФЭУ.

Г=(

-1)/(
-1).

При

=5 имеем Г=1,25; таким образом, ФЭУ обеспечивает усиление сигнала с малыми дополнительно вносимыми шумами.

Исследование спектральных характеристик сигнала электрооптического светорассеяния отличается от исследования флуктуаций света, рассеянного коллоидными частицами тем, что в спектре сигнала появляются специфические стационарные пики на частоте ориентирующего поля и на кратных ей частотах. Наличие этих пиков связано с ориентацией частиц под действием поля. На ряде спектров появляются пики на частоте сети питания, равной 50 Гц, что связано с трудностями полного исключения проникновения сетевых наводок в измерительную часть аппаратуры, которая очень чувствительна к внешним помехам. Даже тщательная экранировка не гарантирует полного устранения сетевых наводок в измерительной схеме.

Рис. 2. Спектры плотности мощности сигнала электрооптического рассеяния света, хлорид аммония в парах oктилoвoгo спирта; зависимость oт напряженности поля ориентирующих однополярных импульсов, F=350 Гц;

1 - E=4 кВ/см; 2 - E=400 В/см.

Исследования спектральных характеристик сигнала электрооптического светорассеяния проводились в двух режимах - при наложении однополярных прямоугольных импульсов (рис. 2) и при наложении импульсов переменной полярности (двуполярных прямоугольных импульсов) (рис. 3).

Рис. 3. Спектры плотности мощности сигнала электрооптического рассеяния света; хлорид аммония в парах oктилoвoгo спирта, зависимость от вида ориентирующих импульсов, F=350 Гц;

1 - однополярный импульс, E=2 кВ/см; 2 - двуполярный импульс, E=

1 кВ/см.

Линейный отклик аэродисперсной системы на действие внешнего ориентирующего поля обусловливает изменение спектра флуктуаций частиц, находящихся в тепловом равновесии при отсутствии внешнего поля.

При ориентации аэрозолей только под действием электрической поляризуемости, достигаемое значение стационарного электрооптического эффекта не должно изменяться в момент перемены полярности приложенного электрического поля [2]. Когда же в ориентации участвует и постоянный дипольный момент аэрозольной частицы, на осциллограмме фотоотклика в моменты перемены полярности наблюдается спад или подъем сигнала, что приводит к возникновению в спектре мощности дополнительных пиков на двойной частоте модуляции и на кратных ей частотах. Отношения амплитуд пиков на частоте модуляции и на двойной частоте модуляции видимо несут информацию об отношениях постоянного и наведенного дипольных моментов аэрозольных частиц (рис. 3).

Ориентация аэрозолей под действием однополярных прямоугольных импульсов приводит к возникновению в спектре мощности электрооптического сигнала пиков на частоте модуляции.

Периодические прямоугольные колебания можно рассматривать как суперпозицию синусоидальных колебаний. Если мы подадим на обкладки электрооптической ячейки последовательность прямоугольных колебаний напряжения с периодом T и амплитудой V0 (меандр), то их можно представить в виде суммы бесконечного ряда синусоидальных напряжений:

(5)

Прикладывая к электрооптической ячейке ориентирующее поле прямоугольных импульсов и вычисляя спектр мощности сигналов рассеянного света, можно визуально получить отклик аэрозольной системы на каждую Фурье-компоненту спектрального разложения (5).

Сложный спектральный состав самого прямоугольного ориентирующего импульса способствует возбуждению ориентационных колебаний частиц и на частотах, кратных частоте модуляции сигнала.

Таким образом, кроме флуктуационного сигнала вида 1/f

, присущего брoунoвскoму движению аэрозольных частиц, в спектре сигнала электрооптического светорассеяния присутствует ряд пиков сигналов, соответствующих ориентации несферических частиц под действием электрического поля. Пики, складываясь с 1/f
флуктуациями, дают в суперпозиции шумовую картину электрооптического сигнала. Из рис. 2 и 3 видно, что спектр электрооптического сигнала имеет достаточно сложный характер.

Запись реализаций сигналов показывает, что:

1) измерительный комплекс хорошо отслеживает сигналы ориентации аэрозолей под действием поля;

2) в записанных реализациях преобладают относительно медленные флуктуации;

3) количественные соотношения между высокочастотной и низкочастотной составляющими флуктуаций могут быть получены из спектра плотности мощности электрооптического сигнала.

Список литературы

Шен И.Р. Принципы нелинейной оптики. М.: Наука, 1989. 560 с.

Электрooптика коллоидов / Под общ. ред. Духина С.С. Киев: Наукoва думка, 1977. 200 с.

Нуссбаумер Г. Быстрое преобразование Фурье и алгоритмы вычисления сверток / Пер. с англ. М.: Радио и связь, 1985. 248 с.

Зуев В.Е., Кабанов М.В. Перенос оптических сигналов в земной атмосфере (в условиях помех). М.: Сов. радио, 1977. 368 с.

Кросиньяни Б., Ди Порто П., Бертолотти М. Статистические свойства рассеянного света / Пер. с англ. М.: Наука, 1980. 206 с.

Ван дер Зил А. Шумы при измерениях / Пер. с англ. М.: Мир, 1979. 292 с.

Макс Ж. Методы и техника обработки сигналов при физических измерениях: В 2-х т. / Пер. с франц. М.: Мир, 1983. Т. 2. 256 с.