Смекни!
smekni.com

Решение иррациональных уравнений (стр. 1 из 3)

.

Реферат выполнен Верхошанской Светланой Александровной, ученицей 9”Г” класса.

МОУ “Ульканская средняя общеобразовательная школа №2”.

Улькан

2005

Историческая справка об иррациональных уравнениях.

“Источником алгебраических иррациональностей является двузначность или многозначность задачи; ибо было бы невозможно выразить одним и тем же вычислением многие значения, удовлетворяющие одной и той же задаче, иначе, чем при помощи корней…; они же разве только в частных случаях могут быть сведены к рациональностям”.

(Лейбниц Г.)

Одной из конкретных причин появления математических теорий явилось открытие иррациональностей. Вначале это произошло в пределах геометрических изысканий в виде установления факта несоизмеримости двух отрезков прямой. Значение этого открытия в математике трудно переоценить. В математику, едва ли не впервые, вошла сложная теоретическая абстракция, не имеющая аналога в донаучном общечеловеческом опыте. Вероятно, самой первой иррациональностью, открытой древнегреческими математиками, было число

. Можно с определённой уверенностью считать, что исходным пунктом этого открытия были попытки найти общую меру с помощью алгоритма попеременного вычитания, известного сейчас как алгоритм Евклида. Возможно также, что некоторую роль сыграла задача математической теории музыки: деление октава, приводящее к пропорции 1:п=п:2. Не последнюю роль сыграл и характерный для пифагорейской школы общий интерес к теоретико-числовым проблемам.

Древние математики нашли довольно быстро логически строгое доказательство иррациональности числа

путём сведения этого доказательства к формальному противоречию. Пусть
, где m и n – взаимно простые числа. Тогда m2=2n2, откуда следует, что т2 чётное и, следовательно, п2 чётное. Чётно, следовательно и п. Получающееся противоречие (п не может быть одновременно и чётным и нечётным) указывает на неверность посылки, что число
рационально.

Для исследования вновь открываемых квадратичных иррациональностей сразу же оказалось необходимым разрабатывать теорию делимости чисел. В самом деле, пусть

, где p и g - взаимно просты, а п является произведением только первых степеней сомножителей отсюда р2=пg2. Если t – простой делитель п, то р2 (а значит, и р) делится на t. Следовательно, р2 делится на t2. Но в п содержится только первая степень t. Значит g2 (равно как и g) делится на t. Но этот результат формально противоречит предположению, что р и g взаимно просты.

Вслед за иррациональностью числа

были открыты многие другие иррациональности. Так, Архит (около 428-365 до н.э.) доказал иррациональность чисел вида
. Теодор из Кирены (V в. до н.э.) установил иррациональность квадратного корня из чисел 3,5,6,…,17, которые не являются полным квадратом. Теэтет (410-369 до н.э.) дал одну из первых классификаций иррациональностей.

С появлением иррациональностей в древнегреческой математике возникли серьёзные трудности как в теоретико-числовом, так и в геометрическом плане.

Решение иррациональных уравнений.

Уравнения, в которых под знаком корня содержится переменная, называют иррациональными. Таково, например, уравнение

.

При решении иррациональных уравнений полученные решения требуют проверки, потому, например, что неверное равенство при возведении в квадрат может дать верное равенство. В самом деле, неверное равенство

при возведении в квадрат даёт верное равенство 12= (-1)2, 1=1.

Иногда удобнее решать иррациональные уравнения, используя равносильные переходы.

Пример 1. Решим уравнение

.

Возведём обе части этого уравнения в квадрат и получим

, откуда следует, что
, т.е.
.

Проверим, что полученные числа являются решениями уравнения. Действительно, при подстановке их в данное уравнение получаются верные равенства:

и

Следовательно, x=3 или x=-3 – решение данного уравнения.

Пример 2. Решим уравнение

.

Возведя в квадрат обе части уравнения, получим

. После преобразований приходим к квадратному уравнению
, корни которого
и
.

Проверим, являются ли найденные числа решениями данного уравнения. При подстановке в него числа 4 получим верное равенство

, т.е. 4 - решение данного уравнения. При подстановке же числа 1 получаем в правой части -1, а в левой части число 1. Следовательно, 1 не является решением уравнения; говорят, что это посторонний корень, полученный в результате принятого способа решения.

Ответ:

.

Пример 3. Решим уравнение

.

Возведём обе части этого уравнения в квадрат:

, откуда получаем уравнение
, корни которого
и
. Сразу ясно, что число -1 не является корнем данного уравнения, т.к. обе части его не определены при
. При подстановке в уравнение числа 2 получаем верное равенство
, следовательно, решением данного уравнения является только число 2.

Пример 4. Решим уравнение

.

Возведя в квадрат обе части этого уравнения, получаем

,
,
. Подстановкой убеждаемся, что число 5 не является корнем данного уравнения. Поэтому уравнение не имеет решений.

Пример 5. Решим уравнение

.

По определению

- это такое неотрицательное число, квадрат которого равен подкоренному выражению. Другими словами, уравнение
равносильно системе:

Решая первое уравнение системы, равносильное уравнению

, получим корни 11 и 6, но условие
выполняется только для
. Поэтому данное уравнение имеет один корень
.

Пример 6. Решим уравнение

.

В отличие от рассмотренных ранее примеров данное иррациональное уравнение содержит не квадратный корень, а корень третьей степени. Поэтому для того, чтобы “избавиться от радикала”, надо возвести обе части уравнения не в квадрат, а в куб:

. После преобразований получаем:

Итак,

,
.

Пример 7. Решим систему уравнений:

Положив
и
, приходим к системе