Смекни!
smekni.com

Конические сечения (стр. 1 из 2)

Муниципальное Образовательное Учреждение

Средняя Общеобразовательная школа №4

Конические сечения

Выполнил

Спиридонов Антон

ученик 11 А класса

Проверил

Коробейникова А. Т.

Тобольск – 2006 г.

ОГЛАВЛЕНИЕ.

Введение

Понятие конических сечений

Виды конических сечений

Исследование

Построение конических сечений

Аналитический подход

Применение

Приложение

Список литературы

Введение.

Цель: изучить конические сечения.

Задачи: научиться различать виды конических сечений, строить кинические сечения и применять аналитический подход.

Конические сечения впервые предложил использовать древнегреческий геометр Менехм, живший в IV веке до нашей эры, при решении задачи об удвоении куба. Эту задачу связывают со следующей легендой.

Однажды на острове Делосе вспыхнула эпидемия чумы. Жители острова обратились к оракулу, который сказал, что для прекращения эпидемии надо увеличить вдвое золотой жертвенник, который имел форму куба и находился в храме Аполлона в Афинах. Островитяне изготовили новый жертвенник, ребра которого были вдвое больше ребер прежнего. Однако чума не прекратилась. Разгневанные жители услышали от оракула, что неверно поняли его предписание — удвоить было надо не ребра куба, а его объём, то есть увеличить ребра куба в

раз. В терминах геометрической алгебры, которой пользовались греческие математики, задача означала: по данному отрезку а найти такие отрезки х и y такие, что а : х = х : y = y : 2a. Тогда длина отрезка х будет равна
.

Приведенную пропорцию можно рассматривать как систему уравнений:

Но x2=ay и y2=2ax — это уравнения парабол. Поэтому для решения задачи следует отыскать точки их пересечения. Если же учесть, что из системы можно получить и уравнение гиперболы xy=2a2, то эту же задачу возможно решить нахождением точек пересечения параболы с гиперболой.

Для получения конических сечений Менехм пересекал конус - остроугольный, прямоугольный или тупоугольный — плоскостью, перпендикулярной одной из образующих. Для остроугольного конуса сечение плоскостью, перпендикулярной к его образующей, имеет форму эллипса. Тупоугольный конус при этом дает гиперболу, а прямоугольный – параболу.

Отсюда произошли и названия кривых, которые были введены Аполлонием Пергским, жившим в III веке до нашей эры: эллипс (έλλείψίς ), что означает изъян, недостаток (угла конуса до прямого); гипербола (ύπέρβωλη) — преувеличение, перевес (угла конуса над прямым); парабола (παραβολη) — приближение, равенство (угла конуса прямому углу). Позже греки заметили, что все три кривые можно получить на одном конусе, изменяя наклон секущей плоскости. При этом следует брать конус, состоящий из двух полостей и мыслить, что они простираются в бесконечность (Рис. 1).

Если провести сечение кругового конуса, перпендикулярное его оси, а потом поворачивать секущую плоскость, оставляя одну точку её пересечения с конусом неподвижной, то увидим, как окружность будет сначала вытягиваться, превратившись в эллипс. Затем вторая вершина эллипса уйдет в бесконечность, и вместо эллипса получится парабола, а потом плоскость пресечет и вторую полость конуса и получится гипербола.

Понятие конических сечений.

Конические сечения - этоплоские кривые, которые получаются пересечением прямого кругового конуса плоскостью, не проходящей через его вершину. С точки зрения аналитической геометрии коническое сечение представляет собой геометрическое место точек, удовлетворяющих уравнению второго порядка. За исключением вырожденных случаев, рассматриваемых в последнем разделе, коническими сечениями являются эллипсы, гиперболы или параболы (Рис. 2).

При вращении прямоугольного треугольника около одного из катетов, гипотенуза с ее продолжениями описывает коническую поверхность, называемую поверхностью прямого кругового конуса, которая может быть рассматриваема как непрерывный ряд прямых, проходящих через вершину и называемых образующими, причем все образующие опираются на одну и ту же окружность, называемую производящей. Каждая из образующих представляет собой гипотенузу вращающегося треугольника (в известном его положении), продолженную в обе стороны до бесконечности. Таким образом, каждая образующая простирается по обе стороны от вершины, вследствие чего и поверхность имеет две полости: они сходятся в одну точку в общей вершине. Если такую поверхность пересечь плоскостью, то в сечении получится кривая, которая и называется коническим сечением. Она может быть трех типов:

1) если плоскость пересекает коническую поверхность по всем образующим, то рассекается только одна полость и в сечении получается замкнутая кривая, называемая эллипсом;

2) если секущая плоскость пересекает обе полости, то получается кривая, имеющая две ветви и называемая гиперболой;

3) если секущая плоскость параллельна одной из образующих, то получается парабола.

Если секущая плоскость параллельна производящей окружности, то получается окружность, которая может быть рассматриваема как частный случай эллипса. Секущая плоскость может пересекать коническую поверхность только в одной вершине, тогда в сечении получается точка, как частный случай эллипса.

Если плоскостью, проходящей через вершину, пересекаются обе полости, то в сечении получается пара пересекающихся прямых, рассматриваемая как частный случай гиперболы.

Если вершина бесконечно удалена, то коническая поверхность обращается в цилиндрическую, и сечение ее плоскостью, параллельной образующим, дает пару параллельных прямых как частный случай параболы. Конические сечения выражаются уравнениями 2-го порядка, общий вид которых

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0

и называются кривыми 2-го порядка.

Виды конических сечений.

Конические сечения могут быть трёх типов:

1) секущая плоскость пересекает все образующие конуса в точках одной его полости; линия пересечения есть замкнутая овальная кривая — эллипс; окружность как частный случай эллипса получается, когда секущая плоскость перпендикулярна оси конуса.

2) Секущая плоскость параллельна одной из касательных плоскостей конуса; в сечении получается незамкнутая, уходящая в бесконечность кривая — парабола, целиком лежащая на одной полости.

3) Секущая плоскость пересекает обе полости конуса; линия пересечения — гипербола — состоит из двух одинаковых незамкнутых, простирающихся в бесконечность частей (ветвей гиперболы), лежащих на обеих полостях конуса.

Исследование.

В тех случаях, когда конические сечение имеет центр симметрии (центр), т. е. является эллипсом или гиперболой, его уравнение может быть приведено (путём перенесения начала координат в центр) к виду:

a11x2+2a12xy + a22y2 = a33.

Дальнейшие исследования таких (называемых центральными) конические сечения показывают, что их уравнения могут быть приведены к ещё более простому виду:

Ах2 + Ву2 = С,

если за направления осей координат выбрать главные направления — направления главных осей (осей симметрии) конических сечений. Если А и В имеют одинаковые знаки (совпадающие со знаком С), то уравнение определяет эллипс; если А и В разного знака, то — гиперболу.

Уравнение параболы привести к виду (Ах2 + Ву2 = С) нельзя. При надлежащем выборе осей координат (одна ось координат — единственная ось симметрии параболы, другая — перпендикулярная к ней прямая, проходящая через вершину параболы) её уравнение можно привести к виду:

y2 = 2рх.

ПОСТРОЕНИЕ КОНИЧЕСКИХ СЕЧЕНИЙ.

Изучая конические сечения как пересечения плоскостей и конусов, древнегреческие математики рассматривали их и как траектории точек на плоскости. Было установлено, что эллипс можно определить как геометрическое место точек, сумма расстояний от которых до двух заданных точек постоянна; параболу – как геометрическое место точек, равноудаленных от заданной точки и заданной прямой; гиперболу – как геометрическое место точек, разность расстояний от которых до двух заданных точек постоянна.

Эти определения конических сечений как плоских кривых подсказывают и способ их построения с помощью натянутой нити.

Эллипс. Если концы нити заданной длины закреплены в точках F1 и F2 (рис. 3), то кривая, описываемая острием карандаша, скользящим по туго натянутой нити, имеет форму эллипса. Точки F1 и F2 называются фокусами эллипса, а отрезки V1V2 и v1v2 между точками пересечения эллипса с осями координат – большой и малыми осями. Если точки F1 и F2 совпадают, то эллипс превращается в окружность (Рис. 3).

Гипербола. При построении гиперболы точка P, острие карандаша, фиксируется на нити, которая свободно скользит по шпенькам, установленным в точках F1 и F2, как показано на рисунке 4, а, расстояния подобраны так, что отрезок PF2 превосходит по длине отрезок PF1 на фиксированную величину, меньшую расстояния F1F2. При этом один конец нити проходит под шпеньком F1, и оба конца нити проходят поверх шпенька F2. (Острие карандаша не должно скользить по нити, поэтому его нужно закрепить, сделав на нити маленькую петлю и продев в нее острие.) Одну ветвь гиперболы (PV1Q) мы вычерчиваем, следя за тем, чтобы нить оставалась все время натянутой, и, потягивая оба конца нити вниз за точку F2, а когда точка P окажется ниже отрезка F1F2, придерживая нить за оба конца и осторожно отпуская ее. Вторую ветвь гиперболы мы вычерчиваем, предварительно поменяв шпеньки F1 и F2 (Рис. 4).