Смекни!
smekni.com

Неевклидова геометрия (стр. 3 из 3)

Таким образом, в плоскости Лобачевского треугольник вполне определяется своими углами. Стороны и углы зависят друг от друга. Отсюда ясно, что в геометрии Лобачевского нет подобных фигур. Действительно, ведь из существования подобных фигур вытекает евклидова аксиома параллельности.

6) Площади. Уже известно, что, чем меньше размеры фигур, которые мы изучаем, тем ближе к геометрии Евклида, в которой угловой дефект треугольника равен 0. Доказывается следующая теорема: площадь треугольника прямопропорциональна его угловому дефекту. Чем меньше размеры фигуры, тем меньше ее дефект, тем меньше площадь. Однако угловой дефект по определениям не может превзойти 2π, следовательно, и площадь треугольника в геометрии Лобачевского не может стать больше некоторой, определенной, конечной величины.


5. Практическое применение геометрии Лобачевского.

1) Теорема Пифагора.

Теорема. Для всякого прямоугольного треугольника плоскости Лобачевского выполняется равенство ch c = ch a ·ch b, где a, b - длины катетов, c - длина гипотенузы этого треугольника, а ch x=

(гиперболический косинус).

Доказательство. Воспользуемся моделью Пуанкаре плоскости Лобачевского на евклидовой полуплоскости. Будем считать (см. рисунок ниже), что вершинам A, B, C данного прямоугольного треугольника соответствуют комплексные числа

где
так как этого всегда можно добиться с помощью некоторого неевклидова движения.

Используя формулу

для вычисления неевклидова расстояния между точками z и w в H2, получаем, что

Почленное перемножение двух первых соотношений и приводит, как показывает третье соотношение, к завершению доказательства теоремы.

2) Замечание к теореме Пифагора

Н.И.Лобачевским было замечено, что созданная им неевклидова геометрия в бесконечно малом, то есть в первом приближении, совпадает с геометрией евклидовой плоскости. Проиллюстрируем это на примере теоремы Пифагора. Используя разложение гиперболического косинуса в ряд

получим для теоремы Пифагора соотношение

Исключая теперь члены низшего порядка, приходим к теореме Пифагора евклидовой геометрии:

3) Площадь треугольника

Подробный вывод формулы площади треугольника на плоскости Лобачевского я приводить не буду ввиду его сложности (в нем используется формулы, доказываемые лишь в курсе дифференциальной геометрии).

Если ABC - треугольник в модели Пуанкаре, меры углов A, B и C - α, β и γ соответственно,
- мера угла B в треугольнике ABD, а
и
мера углов B и C в треугольнике BCD. Тогда

Вследствие этого можно сформулировать теорему

Теорема.Для площади треугольника ABC с углами

справедлива формула

Следствие1.Площадь треугольника плоскости Лобачевского ограничена.

Следствие 2.Если дан выпуклый многоугольник

с внутренними углами
то

4) Длина окружности и площадь круга.

Теорема. Площадь круга с радиусом r равна

а длина окружности, ограничивающей этот круг, равна

, где
. Длина неевклидовой окружности не пропорциональна радиусу, как в случае евклидовой геометрии, а растет быстрее. Также площадь неевклидова круга больше площади круга евклидовой плоскости, имеющего тот же радиус.

6. Вывод:

Открытие неевклидовой геометрии, начало которому положил Лобачевский, не только сыграло огромную роль в развитии новых идей и методов в математике естествознании, но имеет и философское значение. Господствовавшее до Лобачевского мнение о незыблемости геометрии Евклида в значительной мере основывалось на учении известного немецкого философа И. Канта (1724-1804), родоначальника немецкого классического идеализма. Кант утверждал, что человек упорядочивает явления реального мира согласно априорным представлениям, а геометрические представления и идеи якобы априорны (латинское слово aprior означает – изначально, заранее), то есть, не отражают явлений действительного мира, не зависят от практики, от опыта, а являются врожденными человеческому миру, раз и навсегда зафиксированными, свойственными человеческому разуму, его духу. Поэтому, Кант считал, что Евклидова геометрия непоколебима, неизменна, и является вечной истиной. Еще до Канта геометрия Евклида считалась незыблемой, как единственно возможное учение о реальном пространстве.

Открытие неевклидовой геометрии доказало, что нельзя абсолютировать представления о пространстве, что «употребительная» (как назвал Лобачевский геометрию Евклида) геометрия не является единственно возможной, однако это не подорвало незыблемость геометрии Евклида. Итак, в основе геометрии Евклида лежат не априорные, врожденные уму понятия и аксиомы, а такие понятия, которые связаны с деятельностью человека, с человеческой практикой. Только практика может решить вопрос о том, какая геометрия вернее излагает свойства физического пространства. Открытие неевклидовой геометрии дало решающий толчок грандиозному развитию науки, способствовало и поныне способствует более глубокому пониманию окружающего нас материального мира.


Список источников:

1. Математика XIX века, «Наука», М., 1981

2. “Квант” №11,№12 Академик АН СССР А.Д. Александров, Интернет-издания.

3. Юшкевич А.П., История математики в России, «Наука», М., 1968

4. Ефимов Н.В., Высшая геометрия, «Наука», М.,1971.

5. Неевклидовы пространства и новые проблемы физики, «Белка», М., 1993

6. Клайн М., Математика. Утрата определенности, «Мир», М., 1984

7. Г.И. Глейзер. История математики в школе IX – X классы. Пособие для учителей. Москва, «Просвещение» 1983г.

8. Даан Дальмедино А., Пейффер И. Пути и лабиринты. Очерки по истории математики. Перевод с французского. М: Мир.1986г.

9. Б.Л. Лаптев. Н.И. Лобачевский и его геометрия. Пособие для учащихся. М. «Просвещение», 1970г.

10. И.М. Яглам. Принцип относительности Галилея и неевклидова геометрия. Серия «Библиотека математического кружка» М: 1963г.

11. http://www.bankreferatov.ru

12. http://www.refportal.ru

13. http://www.edu.ru

14. http://www.

15. http://www.themesoch.narod.ru/t_s

16. http://www.referat.online.ru

17. http://www.pautina.net