Смекни!
smekni.com

Основные понятия математического анализа (стр. 1 из 4)

Содержание

Двойные интегралы

Определение определенного интеграла

Правило вычисления двойного интеграла.

Вычисление объемов тел с помощью двойного интеграла

Вычисление площадей поверхностей фигур с помощью двойного интеграла.

Тройные интегралы

Вычисление объемов тел с помощью тройного интеграла.

Несобственные интегралы.

Дифференциальные уравнения.

1. Дифференциальные уравнения первого порядка с разделяющимися переменными

2. Однородные дифференциальные уравнения первого порядка

3. Линейные дифференциальные уравнения

4. Уравнения Бернулли

Дифференциальные уравнения второго порядка.

Три случая понижения порядка.

Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами.

Линейные неоднородные дифференциальные уравнения второго порядка с постоянными коэффициентами.

Комплексные числа

Геометрическое изображение комплексных чисел

Действия над комплексными числами.

Произведение.

Частное.

Возведение в степень.

Извлечение корня

Ряды.

Числовые ряды.

Свойства числовых рядов.

Знакоположительные ряды

Признаки сходимости и расходимости знакоположительных рядов.

Знакопеременные и знакочередующиеся ряды.

ДВОЙНЫЕ ИНТЕГРАЛЫ

Определение определенного интеграла

- интегральная сумма.

Геометрический смысл ОИ: равен площади криволинейной трапеции.

Аналогично ОИ выводится и двойной интеграл.

Пусть задана функция двух переменных z=f(x,y), которая определена в замкнутой области S плоскости ХОУ.

Интегральной суммой для этой функции называется сумма

Она распространяется на те значения i и к, для которых точки (xi,yk) принадлежат области S.

Двойной интеграл от функции z=f(x,y), определенной в замкнутой области S плоскости ХОУ, называется предел соответствующей интегральной суммы.

Правило вычисления двойного интеграла

Двойной интеграл вычисляется через повторные или двукратные интегралы. Различаются два основных вида областей интегрирования.

1. (Рис.1) Область интегрирования S ограничена прямыми х=а, х=в и кривыми

.

Для такой области двойной интеграл вычисляется через повторный по формуле:

Сначала вычисляется внутренний интеграл:

При вычислении внутреннего интеграла ‘у’ считается переменной, а ‘х’-постоянной.

2. (Рис.2) Область интегрирования S ограничена прямыми у=С, у=dи кривыми

.

Для такой области двойной интеграл вычисляется через повторный по формуле:

Сначала вычисляется внутренний интеграл, затем внешний.

При вычислении внутреннего интеграла ‘х’ считается переменной, а ‘у’-постоянной.

3. Если область интегрирования не относится ни к 1 ни ко второму случаю, то разбиваем ее на части таким образом, чтобы каждая из частей относилась к одному из этих двух видов.

Вычисление объемов тел с помощью двойного интеграла

Объем тела, ограниченного сверху поверхностью z=f(x,y), снизу- плоскостью z=0 (плоскость ХОУ) и с боков- цилиндрической поверхностью, вырезающей на плоскости ХОУ область S, вычисляется по формуле:


Вычисление площадей поверхностей фигур с помощью двойного интеграла

Если гладкая поверхность задана уравнением z=f(x,y), то площадь поверхности (Sпов.), имеющей своей проекцией на плоскость ХОУ область S, находится по формуле:

- площадь поверхности.

ТРОЙНЫЕ ИНТЕГРАЛЫ

Определяется аналогично двойному интегралу.

Тройной интеграл от функции U=f(x,y,z), распространенным на область V, называется предел соответствующей трехкратной суммы.

Вычисление тройного интеграла сводится к последовательному вычислению обыкновенных (однократных) нтегралов.

Вычисление объемов тел с помощью тройного интеграла

Объем тела вычисляется по формуле:

НЕСОБСТВЕННЫЕ ИНТЕГРАЛЫ

Это интегралы: - с бесконечными пределами; - от неограниченной функции.

Первый вид

Несобственные интегралы с бесконечными пределами имеют вид:

;
;

Несобственные интегралы от функции в пределах от (а) до (

) определяются равенством.

1.

; 2.
; 3.

Если этот предел существует и конечен, то несобственный интеграл называется сходящимся; если предел не существует или равен бесконечности, то несобственный интеграл называется расходящимся (ряд сходится или расходится?). Это и есть ответ.

Второй вид

Несобственные интегралы от неограниченной функции имеют вид:

, где существует точка “с” (точка разрыва) такая, что
;
, т.е.
(в частности c=a; c=b).

Если функция f(x) имеет бесконечный разрыв в точке “с” отрезка [a;b] и непрерывна при

или
, то полагаем:

Если пределы в правой части последнего равенства существуют и конечны, то несобственный интеграл сходится, если пределы не существуют или равны бесконечности - то расходятся.

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ

1. Дифференциальное уравнение- уравнение , связывающее независимую переменную х, искомую функцию f(x) и ее производные .

Символически дифференциальное уравнение выглядит:

F(x,y,y’,y’’…,y(n))=0 или

.

2. Порядком дифференциального уравнения называется порядок наивысшей производной, входящей в уравнение:

Пример.

F(x,y,y’)=0- дифференциальное уравнение первого порядка.

F(x,y,y’,y’’)=0- дифференциальное уравнение второго порядка.

3. Решением дифференциального уравнения называется всякая функция

, которая при подстановке в уравнение, обращает его в верное тождество.

Для того чтобы решить дифференциальное уравнение надо его проинтегрировать.

Пример.

Дифференциальное уравнение первого порядка.

Общее и частное решения.

F(x,y,y’)=0

Это уравнение можно привести к виду y’=f(x,y).

Интегрируем уравнение.

После вычисления возникает постоянная С. Поэтому решение фактически зависит не только от х, но и от С, т.е. y=f(x,C). Придавая С различные значения, мы получаем множество различных решений дифференциального уравнения. Эти решения (y=f(x,C)) называются общим решением дифференциального уравнения.

Придавая С различные значения получаем различные решения дифференциального уравнения. Так как С имеет бесконечное множество значений, то и решений будет бесконечное множество (которые отличаются друг от друга путем сдвига на несколько единиц).

Геометрически общее решение представляет собой семейство кривых на координатной плоскости ХОУ.

Частное решение.

Пусть в дифференциальном уравнении заданы дополнительные условия, что при х=х0 функция принимает значение у=у0. Это дополнительное условие называется начальным условием и записывается: а). у=у0 при х=х0; б).

; в). у(х0)=у0.

Геометрически начальное условие означает некоторую точку (х0,у0) на плоскости ХОУ.