Смекни!
smekni.com

Использование обобщений при обучении математике в средней школе (стр. 5 из 7)

В подобных случаях рекомендуется исключить в формулировке задачи условие о движении, ученикам задать вопросы: что изменилось в задаче? Для чего было дано автором это условие?

Иногда задачу требуется иллюстрировать чертежом (особенно, если она геометрическая). При решении текстовых алгебраических задач необходимо осуществить своеобразный перевод на чисто математический язык уравнений (иногда неравенств).

Всё названное – представление условия задачи и его запись в разных вариантах. Примеры варьирования условий задачи можно продолжить.

Иногда условие задачи или теоремы таково, что её можно разбить на несколько задач. Например:

«Доказать, что если при пересечении двух прямых третей либо равны внутренние накрест лежащие углы, либо равны соответственные углы, либо сумма внутренних односторонних углов равна 180, то прямые параллельны» (известная теорема).

Эта задача фактически состоит из трёх задач, условие каждой из которых начинается после очередного слова «либо»; а заключение – одно. Конечно, такую задачу целесообразно разбить на три разные, а затем показать, как может быть осуществлено обобщение результатов задачи.

Полезно тут же сформулировать задачу, обратную данной. Это тоже будут три разные задачи, условия которых одинаковы (две параллельные прямые пересечены третьей). А заключения различные.

Так путём варьирования формулировки задачи можно показать учащимся, как возможности обобщения задач, так и возможности разбития их на несколько.

Иногда частные случаи позволяют выявить следствия из задачи или теоремы. Например, следствие теоремы. «В равнобедренном треугольнике углы при основании равны» является предложение: «В равностороннем треугольнике все углы равны».

Наконец, условия задачи проанализированы, заключение ясно, всё чётко переформулировано так, как удобно ученику в данный момент, и можно переходить к поиску решения задачи.

Что рекомендует Д.Пойа? Первое: «Известна ли вам какая-нибудь родственная задача?» Если известна, то решение предлагаемой задачи становиться «решением по образцу», и его поиск совершенно не нужен.

Вторая рекомендация Д.Пойа: «Встречалась ли вам какая-нибудь задача с тем же неизвестным?» Этот вопрос далеко не всегда приведёт к правильному ответу на него.

Допустим, что нам требуется найти высоту в треугольнике. Какой метод использовать? Вспомнить о признаках равенства треугольников? О признаках подобия? О вычислении площадей треугольников? Или использовать факт о диаметре, перпендикулярном к хорде, выполнив какие-нибудь дополнительные построения?

Чтобы прояснить наши дальнейшие действия, нужно связать условие с заключением. Как? В текстовых задачах требуется обычно составить уравнение, а может быть, неравенство или систему неравенств для того, чтобы обеспечить такую связь. В геометрии полезно начать с обращения к определениям понятий, содержащихся в условии и заключении задачи. Вопрос: «не можем ли мы указать родственную задачу?» заставляет нас обратиться к аналогам, но иногда это приводит к ошибочному пути, так как сравнение в каждом из различных случаев производиться по различным основаниям, что учащимся не всегда видно.

Например, ученику кажутся аналогичными по способу решения следующие задачи.

1. Дан угол и внутри него две точки. Построить четырёхугольник минимального периметра, у которого две смежные вершины лежат в данных точках, а две другие – на сторонах данного угла.

2. Дана прямая х и две точки А и В по разные стороны от неё. Поместить на прямой х отрезок МN = а, так, чтобы длина ломаной АМNВ была наименьшей.

Основания для такого утверждения дают следующие общие факты из содержания задачи:

- требуется построить ломаную наименьшей длины;

- даны прямые и точки, взаимное расположение которых известно;

- заметно некоторое внешнее сходство чертежей.

Между тем, первая задача решается методом симметрии, вторая – методом параллельного переноса.

Прекрасным примером варьирования является обобщение. При различных способах обобщения изменяется эффективность выбранной преподавателем методики обучения. Все знания, умения и навыки, формируемые у учащихся в обучении математике можно разделить на следующие:

- частные (они распространяются на один математический объект или бесконечно много таких объектов, например, знание таблицы Пифагора);

- обобщенные.

Очевидно, что между частными и обобщенными знаниями, умениями и навыками нет конкретной границы, они часто проявляются в единстве. Обобщить – это значит зафиксировать общее, что имеется в конкретной теме урока, т.е. в каждом объекте рассматриваемой совокупности. Обобщение в обучении математике – это мысленное выделение общих и существенных признаков математических объектов (или способов действий с ними) и объединение их на этой основе в пределах заданной области (темы, раздела, всего учебного предмета).

Вариативность обучения математике на наш взгляд не осуществима без обобщения.

В свою очередь, понимание и овладение учащимися в полной мере основными обобщениями в математике может произойти только посредством методов вариативного обучения.

Большое внимание обобщению уделяет Г.И.Саранцев, предлагая вниманию учащихся различные приёмы использования обобщения и конкретизации на примерах решения задач.


Структурное представление технологии формирования обобщенного подхода к решению математических задач.

Этапы Задачи Средства Результаты Диагностирование
1 Выявление исходного уровня сформированности обобщенного подхода к решению задач по математике Разработать системы задач и заданий, ориентированных на формирование у учащихся обобщенного подхода к решению задач по математике. Развитие мыслительных операций классификаций, сравнения, систематизации, обобщения Технологические (учебные) карты, раскрывающие структуру деятельности учащихся по поиску решения задач. Умение отыскивать ход мыслительных операций при выборе способа решения математических задач. Математические диктанты, устные и письменные ответы, тестирование.
2 Формирование методологических умений (общеучебных) Разработать модель управления формированием у учащихся обобщенного подхода к решению задач по математике Комплекс учебно-исследовательских заданий, структурно-логические схемы, диагностические материалы и критерии для определения уровня сформированности обобщенного подхода к решению задач по математике. Выделить главное, не оставляя без внимания второстепенное, владеть общим подходом к решению учебных задач. Диагностические работы, уроки-семинары по конструированию поиска решения задач.
3 Решение задач на производственном уровне Использовать модель управления формированием у учащихся обобщенного подхода к решению задач по математике на продвинутом уровне Система задач для развития умений и навыков решать задачи на продвинутом уровне Использовать альтернативные способы решения задач, адаптировать теоретические знания к конкретным практическим ситуациям Педагогический эксперимент по апробации эффективности исследуемых технологий формирования у учащихся обобщенного подхода к решению задач по математике.
4 Проведение практикумов по решению задач и эксперименту Раскрытие значимости технологии формирования обобщенного подхода к решению задач по математике Структурно-логические схемы, учебные карты, методические рекомендации Умения: осуществлять анализ при решении задач, пользоваться логическими операциями: синтез, сравнение, обобщение, определять последовательность действий в каждом конкретном случае Письменные диагностические работы. Научно-практическая конференция учащихся по теме исследования.

ОБОБЩЕНИЕ КАК ЭВРИСТИЧЕСКИЙ ПРИЕМ РЕШЕНИЯ НЕСТАНДАРТНЫХ ЗАДАЧ

Решение многих некоторых задач предполагает использование эвристических приемов группы парадигмы. Под парадигмой понимается система приемов формоизменения текста условия задачи, с помощью которых учащийся по существу заменяет текст условия задачи в определенном смысле эквивалентным ему, но позволяющим в то же время быстрее обнаружить решение. Такая замена может осуществляться по преимуществу тремя путями.

1. Посредством соблюдения правил построения составных знаков математического языка из более простых выражений (синтаксическая парадигма). К данному типу относятся следующие приемы: выражение одной переменной через другую, введение вспомогательной неизвестной, идентификация того или иного геометрического объекта в различных конфигурациях, реконструкция целого по частям, разбиение целого на части, инверсия – расположение рассматриваемых объектов в особом порядке, облегчающем решение.

2. Через переформулирование условия задачи на основе учета связей между знаками исходного языка описания заданной ситуации и их значениями (семантическая парадигма). Сущность приемов, относящихся к данному типу, состоит в переходе от исходной к равносильной задаче путем перевода текста исходной задачи на другой язык, например, с естественного на символический при решении текстовых задач, или нахождение новой интерпретации заданных условий в рамках того же языка.

3. На основе использования логических законов контрапозиции и исключенного третьего (логическая парадигма). Здесь в основном используется метод доказательства от противного, а также приведение контрпримера или подтверждающего примера.

Можно выделить вторую группу эвристических приемов, используемых при решении нестандартных задач, - группу эксперимента. Если в предыдущем случае поиск решения задачи осуществлялся в основном за счет внешней модификации ее условия, без изменения самой задачной ситуации, то эвристические приемы второй группы предполагают активное вмешательство реципиента в ситуацию, описанную в задаче, которое осуществляется посредством анализа и экспериментального исследования взаимоотношений между данными и искомыми этой задачи. В данную группу входят следующие эвристические приемы: рассмотрение частных случаев (неполная индукция), использование предельного перехода, метод математической индукции, групповой анализ, различные дополнительные построения в геометрических задачах, метод малых изменений, использование соображений симметрии, применение свойств монотонности или непрерывности функций и другие.