Смекни!
smekni.com

Общее понятие определённого интеграла, его геометрический и механический смысл (стр. 1 из 3)

Кафедра: Высшая математика

Реферат

по дисциплине Высшая математика

Тема: «Общее понятие определённого интеграла, его геометрический и механический смысл. Необходимое условие интегрируемости»

Тольятти, 2008.

Содержание

Введение

Задачи, приводящие к понятию определенного интеграла

Определенный интеграл как предел интегральной суммы

Связь между определенным и неопределенным интегралами. Формула Ньютона-Лейбница

Свойства определенного интеграла

Геометрический смысл определенного интеграла

Механический смысл определенного интеграла

Необходимое условие интегрируемости

Список использованной литературы

Введение

Интеграл (от лат. integer – целый), одно из важнейших понятий математики, возникшее в связи с потребностью, с одной стороны, отыскивать функции по их производным (например, находить функцию, выражающую путь, пройденный движущейся точкой, по скорости этой точки), а с другой – измерять площади, объёмы, длины дуг, работу сил за определённый промежуток времени и т.п. Соответственно с этим различают неопределенные и определённые интегралы, вычисление которых является задачей интегрального исчисления.

Определенный интеграл – одно из основных понятий математического анализа – является мощным средством исследования в математике, физике, механике и других дисциплинах.

Задачи, приводящие к понятию определенного интеграла

Задача о пройденном пути.

Пусть известен закон изменения мгновенной скорости v = v(t). Определим путь, пройденный при движении точки за промежуток времени от t = α до t = β. Движение в общем случае предполагается неравномерным.

Поступим следующим образом.

1). Разобьем весь промежуток времени на n произвольных интервалов

t0 = α < t1< t2 < … < ti-1 < ti < … tn-1 < tn = β,

где ti – ti-1 = Δti. На произвольном участке [ti-1, ti] будем считать движение близким к равномерному с постоянной скоростью v = v(τi), ti-1 ≤ τi ≤ ti. Тогда за время Δtiпройденный путь приближенно равен si = v(τi)Δti. Результат справедлив для каждого интервала (i = 1, 2, …, n).

2). Если указанные интервалы достаточно малы, то весь путь приближенно равен сумме:

Эта формула тем точнее, чем мельче разбиение данного промежутка времени.

3). Для получения точной формулы пути перейдем к пределу, увеличивая число дроблений (n→∞) и бесконечно измельчая сами интервалы. Обозначим λ = Δti, тогда


Задача о количестве вещества, вступившего в реакцию.

Пусть скорость химического превращения некоторого вещества, участвующего в химической реакции, есть функция времени v = v(t). Найти количество m вступившего в реакцию вещества за промежуток времени от t0 до T. Проделаем последовательно те же операции, что и при решении предыдущей задачи. В результате получим:

Работа переменной силы.

Пусть материальная точка под действием постоянной силы F перемещается по направлению этой силы. Если пройденный путь равен s, то, как известно из курса физики, работа Р этой силы F вычисляется по формуле: Р = FS.

Пусть теперь материальная точка движется по оси Ох от точки А(а) до точки B(b) (b>a) под действием переменной силы, направленной по Ох и являющейся функцией от х: F = f(x).

Для нахождения работы Р в этом случае разобьем отрезок [a; b] точками a = x0<x1<…<xn = b на n частичных отрезков и положим: Δxi = xi – xi-1, i = 1, 2, ..., n. Наибольшую из этих разностей обозначим через λ = maxΔxi. Если эти отрезки достаточно малы, то без большой ошибки на каждом из них силу F можно считать постоянной (равной f(τi)), что дает приближенное выражение для работы

,

где τi – одна из точек сегмента [xi-1, xi]. Отсюда:


Задачи о площади криволинейной трапеции.

Пусть на промежутке [a; b] задана функция f(x)≥0. Криволинейной трапецией называется плоская фигура, ограниченная указанной кривой y=f(x), прямыми x=a, x=b и осью Оx. (рис.1). Для вычисления ее площади проделаем несколько операций.

Рис. 1.

1). Разобьем промежуток [a; b] произвольными точками x0=a<x1<x2<…<xi-1<xi<…<xn=b на n частей. Положим Δxi = xi – xi-1, то есть Δxiесть длина i-го частичного отрезка, а наибольшую из этих длин обозначим λ, (λ=maxΔxi).

2). На каждом отрезке [xi-1, xi] возьмем по произвольной точке ci,

xi-1<ci< xiи вычислим f(ci). Построим прямоугольник с основанием [xi-1, xi] и высотой f(ci). Его площадь равна Si=f(ci)( xi – xi-1). Проделаем это для каждого i = 1, 2, …, n.

3). Площадь всей заштрихованной ступенчатой фигуры, составленной из прямоугольников, равна сумме


Площадь Sкриволинейной трапеции будет приближенно равна площади ступенчатой фигуры:

Чем мельче отрезки деления, тем точнее полученная фигура “отображает” криволинейную трапецию.

4). За площадь криволинейной трапеции принимают предел, к которому стремятся площади ступенчатых фигур, когда длины отрезков деления стремятся к нулю, а их число неограниченно увеличивается (n→∞). Таким образом,

Определенный интеграл как предел интегральной суммы

Естественный ход решения каждой из рассмотренных конкретных задач позволяет установить ту математическую операцию, с выполнением которой связано получение ответа во всех вопросах такого же характера.

Пусть на отрезке [a, b] задана непрерывная функция y=f(x).

1). Заданный отрезок разделим на n промежутков (равных или неравных) точками

a=x0<x1<x2<…<xn-1<xn=b,

причем для всякого индекса i, принимающего целые значения от 1 до n, имеет место соотношение xi-1<xi. Выразим длину каждого из этих частичных промежутков:


x1 - x0 = Δx1, x2 – x1 = Δx2, ..., xn – xn-1 = Δxn.

При этом обозначим длину наибольшего из них через λ.

2). В каждом из этих промежутков выберем произвольное число ξi так, что xi-1≤ ξi ≤ xi., и по каждому такому числу определим соответствующее значение функции f(ξi). Вычислим для каждого промежутка произведение f(ξi)Δxi.

3). Составим сумму таких произведений по всем n промежуткам заданного отрезка:

f(ξ1)Δx1+ f(ξ2)Δx2+ f(ξ3)Δx3+...+ f(ξn)Δxn= .

Такая сумма называется интегральной суммой.

Построение интегральной суммы состоит в произвольном делении заданного отрезка [a, b] на частичные и произвольном выборе числа ξi на каждом отрезке.

4). Выполняется дробление каждого из имеющихся отрезков на более мелкие так, что длина наибольшего из них безгранично уменьшается (λ→0). При этом интегральная сумма становится переменной величиной, имеющей конечный предел, если заданная функция непрерывна, а отрезок [a, b] конечен.

Этот предел называется определенным интегралом от функции f(x) на отрезке [a, b].

Соответствующее математическое выражение таково:


lim= λ→0

Знак ∫, представляющий растянутую S (начальную букву латинского слова «Summa»), символизирует здесь бесконечное увеличение числа слагаемых интегральной суммы. Буквы a и b, указывающие границы отрезка, на котором выполняется суммирование, называются пределами интегрирования.

Таким образом, определенным интегралом функции от f(x) в границах от a до b называется предел интегральной суммы вида

при условии, что длина наибольшего частичного отрезка стремится к нулю.

Выясним теперь возможность непосредственного использования операции, которая привела к понятию определенного интеграла, для решения соответствующих задач. Ограничимся при этом двумя примерами на вычисление площадей.

Пример 1.

Вычислить площадь, заключенную между прямой y=x, осью Ox и прямой x=1.

Решение. Так как данная прямая пересекается с Ox в начале координат, то отрезок интегрирования здесь будет [0, 1].

1). Разбиением этого отрезка на n равных между собой частей получим точки деления с абсциссами:


2). В каждом из полученных n отрезков выберем правые концы, т.е.

Так как f(x) = x, то