Смекни!
smekni.com

Дослідження нестандартних методів рішення рівнянь і нерівностей. (стр. 1 из 6)

Дипломна робота:

Дослідження нестандартних методів рішення рівнянь і нерівностей.


ЗМІСТ

ВВЕДЕННЯ

1 ІСТОРИЧНА ДОВІДКА

2 РІШЕННЯ ЗАДАЧ ІЗ ВИКОРИСТАННЯМ ВЛАСТИВОСТЕЙ ФУНКЦІЇ

2.1 Використання монотонності функції

2.2 Використання обмеженості функції

2.3 Використання періодичності функції

2.4 Використання парності функції

2.5 Використання ОПЗ функції

3 ДЕЯКІ ШТУЧНІ СПОСОБИ РІШЕННЯ РІВНЯНЬ

3.1 Множення рівняння на функцію

3.2 Угадування кореня рівняння

3.3 Використання симетричності рівняння

3.4 Дослідження рівняння на проміжках дійсної осі

ВИСНОВОК

ДОДАТОК

СПИСОК ДЖЕРЕЛ


ВВЕДЕННЯ

Не всяке рівняння або нерівність у результаті перетворень або за допомогою вдалої заміни змінної може бути зведене до рівняння (нерівності) того або іншого стандартного виду, для якого існує певний алгоритм рішення. У таких випадках іноді виявляється корисним використовувати інші методи рішення, мова про які й піде в ході даної роботи. Вище сказане визначає актуальність дипломної роботи. Об'єкт дослідження - рівняння й нерівності, що не піддаються рішенню за допомогою стандартних методів, або що відрізняються громіздкістю стандартного рішення.

Метою даної роботи є ознайомлення з нестандартними методами рішення рівнянь і нерівностей.

Для досягнення поставленої мети в даній роботі вирішувалися наступні задачі:

Зібрати відомості з історії математики про рішення рівнянь.

Розглянути й застосувати на практиці методи рішення рівнянь і нерівностей, засновані на використанні властивостей функції.

Розглянути й застосувати на практиці додаткові нестандартні методи рішення рівнянь і нерівностей

Практична значимість роботи полягає в тому, що не завжди при рішенні складних рівнянь або нерівностей варто йти по «торованій колії», намагаючись знайти рішення «у чоло»: досить лише глянути на нього й знайти зачіпку, що дозволяє уникнути складних обчислень і перетворень. Дипломна робота складається із введення, трьох глав і списку використаних джерел. У першому розділі наведені деякі відомості з історії математики про рішення рівнянь. У другому розділі розглянуті методи рішення, засновані на використанні властивостей функції. Третій розділ присвячений розгляду додаткових (штучних) методів рішення.


1 ІСТОРИЧНА ДОВІДКА

Рівняння й системи рівнянь математики вміли вирішувати дуже давно. В «Арифметиці» грецького математика з Олександрії Диофанта (III в.) ще не було систематичного викладу алгебри, однак у ній утримувався ряд задач, розв'язуваних за допомогою складання рівнянь. Є в ній така задача:

«Знайти два числа по їхній сумі 20 і добутку 96». [16]

Щоб уникнути рішення квадратного рівняння загального виду, до якого приводить позначення одного із чисел буквою і яке тоді ще не вміли вирішувати, Диофант позначав невідомі числа 10 + х і 10-х (у сучасному записі) і одержував неповне квадратне рівняння 100-х2 = 96, для якого вказував лише позитивний корінь 2.

Задачі на квадратні рівняння зустрічаються в працях індійських математиків уже з V в. н.е.

Квадратні рівняння класифікуються в трактаті «Коротка книга про вирахування алгебри й алмукабали» Мухаммеда аль-хорезми (787 - ок. 850). У ньому розглянуті й вирішені (у геометричній формі) 6 видів квадратних рівнянь, що містять в обох частинах тільки члени з позитивними коефіцієнтами. При цьому розглядалися тільки позитивні коріння рівнянь.

У роботах європейських математиків XIII – XVI ст. даються окремі методи рішення різних видів квадратних рівнянь. Злиття цих методів у загальне правило зробив німецький математик Михаель Штифель (1487 - 1567), що розглядав уже й негативні коріння.

У найвідомішому російському підручнику «Арифметика» Леонтія Пилиповича Магницького (1669-1739) було чимало задач на квадратні рівняння. От одна з них:

«Якийсь генерал хоче з 5000 чоловік баталію вчинити, і щоб та була в особі вдвічі, ніж осторонь. Кілько баталія буде мати в особі й осторонь?», тобто скільки солдатів треба поставити по фронті й скільки їм у тил, щоб число солдатів по фронту було в 2 рази більше числа солдат, розташованих їм «у тилу»?

У вавилонських текстах (3000 - 2000 років до н.е.) зустрічаються й задачі, розв'язувані тепер за допомогою систем рівнянь, що містять і рівняння другого ступеня. Приведемо один з них:

«Площі двох своїх квадратів я склав: 25

. Сторона другого квадрата дорівнює
сторони першого й ще 5».

Відповідна система в сучасному записі має вигляд:

Цю задачу вавилонський автор вирішує правильно методом, що ми тепер називаємо методом підстановки, але він ще не користувався алгебраїчною символікою.

В XVI в. французький математик Франсуа Виет (1540 - 1603), що служив шифрувальником при дворі французького короля, уперше ввів літерні позначення не тільки для невідомих величин, але й для даних, тобто коефіцієнтів рівнянь. Ф. Виет для позначення нерозшифрованих букв у повідомленнях супротивника використовував рідкі букви латинського алфавіту х, у и z, що й поклало початок традиції позначати невідомі в рівняннях буквами х, у и z. Особливо цінував Виет відкриті їм формули, які тепер називаються формулами Виета. Однак сам Виет визнавав тільки позитивних корінь.

Лише в ХVII в. після робіт Декарта, Ньютона й інших математиків рішення квадратних рівнянь прийняло сучасний вид.

Повернемося в початок XVI в. Тоді професор математики болонського університету Сципион дель Ферро (1465-1526) уперше знайшов алгебраїчне рішення рівняння третього ступеня виду

x3+px=q, (1)

де р и q - числа позитивні.

Це відкриття, по звичаях того часу, професор тримав у строгому секреті. Про нього знали лише два його учні, у тому числі якийсь Фиоре. Утаювання математичних відкриттів тоді було звичайним явищем, тому що в Італії практикувалися математичні диспути-двобої. На багатолюдних зборах супротивники пропонували один одному задачі для рішення на місці або в певний строк. Найчастіше це були задачі по алгебрі, що називали тоді великим мистецтвом. Перемагав той, хто вирішував більше задач. Переможець не тільки нагороджувався славою й призначеним грошовим призом, але й міг зайняти університетську кафедру, а потерпілий поразку часто втрачав займане місце. От чому учасникові диспуту було важливо мати невідомий інший алгоритм рішення деяких задач.

Після смерті професора дель Ферро його учень Фиоре, що сам не був глибоким математиком, викликав на публічний диспут одного з найвизначніших математиків того часу Никколо Тарталья (1499-1557). Готуючись до диспуту, Тарталья відкрив формулу для знаходження корінь кубічних рівнянь у радикалах, тому що припускав, що Фиоре вже мав цю формулу. Пізніше Тарталья писав: «Я приклав всю свою запопадливість, ретельність і уменье, щоб знайти правило для рішення кубічних рівнянь, і, завдяки благословенній долі, мені вдалося це зробити за 8 днів до строку».

Диспут відбувся 20 лютого 1535 р. Тарталья протягом двох годин вирішив 30 задач, запропонованих йому супротивником, а Фиоре не зміг вирішити ні однієї з 30 задач, запропонованих Тартальєй. Після диспуту Тарталья став знаменитим у всій Італії, але продовжував тримати відкриту формулу в секреті.

Інший італійський математик Джерол (1501 - 1576) довідався від Тартальи правило рішення кубічного рівняння (1) і дав «священну клятву», що нікому не розкриє цієї таємниці. Правда, Тарталья лише частково розкрив свою таємницю, але Кардано, познайомившись із рукописами покійного професора дель Ферро, одержав повну ясність у цьому питанні. В 1545 р. Кардано опублікував знамениту свою працю «Про велике мистецтво, або про алгебраїчні речі, в одній книзі», де вперше опублікував формулу для рішення рівняння (1), а кубічне рівняння загального виду пропонував звести до рівняння (1).

Після виходу у світло цієї книги Кардано був обвинувачений Тартальей у порушенні клятви, але формула, відкрита дель Ферро й Тартальей, і донині називається формулою Кардано.

Така повна драматизму історія відкриття формули корінь кубічного рівняння (1).

У тій же книзі Кардано привів алгебраїчне рішення рівняння четвертого ступеня. Це відкриття зробив один з його учнів Лудовико Феррари (1522 - 1565). Після цього почалися наполегливі пошуки формул, які зводили б рішення рівнянь вищих ступенів до добування корінь («рішення в радикалах»). Ці пошуки тривали біля трьох сторіч, і лише на початку XIX в. норвезький учений Нильс Хенрик Абель (1802 -1829) і французький учений Еварист Галуа (1811 -1832) довели, що рівняння ступенів вище четвертої в загальному випадку в радикалах не вирішуються.

Математик і філософ Рене Декарт (1596 -1650) уперше сформулював у своїй книзі «Геометрія» основну теорему алгебри про число корінь рівняння n-й ступеня. При цьому Декарт припускав існування не тільки щирих (позитивних) і помилкових (менших, чим нічого, тобто менших нуля - негативних) корінь, але й уявлюваних, мнимих (у Декарта - imaginaires), тобто комплексних корінь.

Ще в стародавності математики в процесі рішення задач зіштовхувалися з добуванням кореня квадратного з негативного числа; у цьому випадку задача вважалася нерозв'язною. Однак поступово з'ясовувалося, що рішення багатьох задач, що задаються в дійсних числах, одержує просте пояснення за допомогою виражень a + bi, де i2 = -1, які зрештою теж стали називати числами, але вже комплексними. Перше обґрунтування найпростіших дій над комплексними числами дав італійський математик Раффаеле Бомбелли (1530 -1572) в 1572 р., хоча ще довгий час до комплексних чисел ставилися як до чого надприродному.