Смекни!
smekni.com

Определитель матрицы 2 (стр. 1 из 2)

Оглавление

Задача 1

Задача 2

Задача 3

Задача 4

Задача 5


Задача 1

Вычислить определитель 4-го порядка.

Решение:

Определитель 4-го порядка находится по формуле:

,

где

aij– элемент матрицы;

Мij – минора элемента aij. Минора элемента aijматрицы А называется определитель матрицы, которая была получена путем удаления из матрицы А строк и столбцов, которые содержат элемент aij

Задача 2

Решить систему матричным способом.

Решение:

1. Введем обозначения:

Тогда в матричной форме система имеет вид

, т.е.

А-1-обратная матрица, которая существует только тогда, когда исходная матрица А невырожденная, т.е.

2. Найдем определитель матрицы по формуле:

Так как

, то матрица А – невырожденная и обратная матрица А-1 существует и единственная.

3. Найдем обратную матрицу по формуле:

, где

- присоеденненая матрица, элементы которой
равны алгебраическим дополнениям элементов матрицы
, и затем транспонированная.

a. найдем алгебраического дополнения всех элементов матрицы:

Получается матрица

b. транспонируем матрицу (т.е. матрица AT, полученная из исходной матрицы заменой строк на столбцы)

c. обратная матрица равна:

4. Находим значение переменных х123:

Х1=-27, Х2=36, Х3=-9

Задача 3

Решить систему методом Крамера

Решение:

Метод Крамера (правило Крамера) — способ решения квадратных систем линейных алгебраических уравнений с ненулевым определителем основной матрицы (причём для таких уравнений решение существует и единственно)

1. Данную систему представим в виде матрицы:

2. Найдем определители:

,

(

, т.е. можно применить метод Крамера)

;

.

3. Найдем значение x, y:

,

,

Задача 4

Найти общее решение системы, используя метод Жордана-Гаусса:

Решение:

Данную систему представим в виде матрицы:

Шаг 1.

В качестве разрешающего элемента удобнее взять элемент а11=1 (т.к. при делении на «1» число остается без изменения). Делим элементы строки на разрешающий элемент а11. Разрешающие переменную х1 следует исключить из остальных уравнений, поэтому в новой матрице

в первом столбце во всех строках (кроме 1 строки) необходимо поставить значение «0». Другие элементы новой матрицы находим по правилу прямоугольника:

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

;

Шаг 2.

В полученной матрице в качестве разрешающего элемента берем не равный нулю элемент из любой строки, кроме первой, например а22=5. Делим элементы разрешающей второй строки на «5». Все элементы первого столбца, кроме а11 берем равные «0», а остальные элементы находим по правилу прямоугольника:

;
;

;
;

;

Шаг 3.


В полученной матрице в качестве разрешающего элемента берем не равный нулю элемент из любой строки, кроме первой и второй, например а33=1. Делим элементы разрешающей второй строки на «1». Все элементы первого и второго столбца, кроме а11=1 и а22=1 берем равные «0», а остальные элементы находим по правилу прямоугольника: